Open Access
Issue
RAIRO-Oper. Res.
Volume 55, Number 4, July-August 2021
Page(s) 2413 - 2422
DOI https://doi.org/10.1051/ro/2021112
Published online 25 August 2021
  • M. Abbas and F. Bellahcene, Cutting plane method for multiple objective stochastic integer linear programming problem. Eur. J. Oper. Res. 168 (2006) 967–984. [CrossRef] [Google Scholar]
  • A. Alarcón-Rodrguez, G. Ault and S. Galloway, Multiobjective planning of distributed energy resources review of the state-of-the-art. Renew. Sustainable Energy Rev. 14 (2010) 1353–1366. [CrossRef] [Google Scholar]
  • S. Amrouche and M. Moulai, Molti-objective stochastic integer linear programming with fixed recourse. Int. J. Multicrit. Decis. Mak. 2 (2012) 355–378. [CrossRef] [Google Scholar]
  • B. Aouni, F. Ben Abdelaziz and J.M. Martel, Decision-maker’s preferences modeling in the stochastic goal programming. Eur. J. Oper. Res. 162 (2005) 610–618. [CrossRef] [Google Scholar]
  • E. Ballestero, Stochastic goal programming: a mean-variance approach. Eur. J. Oper. Res. 131 (2001) 476. [CrossRef] [Google Scholar]
  • F. Bellahcene and P. Marthon, A compromise solution method for the multiobjective minimum risk problem. Oper. Res. Int. J. (2019). DOI: 10.1007/s12351-019-00493-1. [Google Scholar]
  • F. Ben Abdelaziz, L’efficacité en programmation multi-objectifs stochastique. Ph.D. Thesis, Université de Laval, Québec (1992). [Google Scholar]
  • F. Ben Abdelaziz and S. Mejri, Application of goal programming in a multi-objective reservoir operation model in Tunisia. Eur. J. Oper. Res. 133 (2001) 352–361. [CrossRef] [Google Scholar]
  • F. Ben Abdelaziz, P. Lang and R. Nadeau, Distributional unanimity in multiobjective stochastic linear programming, edited by J. Clímaco. In: Multicriteria Analysis. Springer-Verlag, Berlin-Heidelberg (1997). [Google Scholar]
  • M. Bravo and I. Gonzalez, Applying stochastic goal programming: a case study on water use planning. Eur. J. Oper. Res. 196 (2009) 1123–1129. [CrossRef] [Google Scholar]
  • R. Caballero, E. Cerdá, M. del Mar Muñoz and L. Rey, Stochastic approach versus multiobjective approach for obtaining efficient solutions in stochastic multiobjective programming problems. Eur. J. Oper. Res. 158 (2004) 633–648. [CrossRef] [Google Scholar]
  • T.Z. Caner and U.A. Tamer, Tactical level planning in float glass manufacturing with co-production, random yields and substitutable products. Eur. J. Oper. Res. 199 (2009) 252–261. [CrossRef] [Google Scholar]
  • D. Chaabane and F. Mebrek, Optimization of a linear function over the set of stochastic efficient solutions. CMS 11 (2014) 157–178. [CrossRef] [Google Scholar]
  • H. Fazlollahtabar and I. Mahdavi, Applying stochastic programming for optimizing production time and cost in an automated manufacturing system. In: International Conference on Computers & Industrial Engineering. Troyes 6-9 July (2009) 1226–1230. [Google Scholar]
  • A.M. Geoffrion, Proper efficiency and the theory of vector maximimization. J. Math. Anal. App. 22 (1968) 618–630. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Goicoechea, L. Dukstein and R.T. Bulfin, Multiobjective Stochastic Programming the PROTRADE-method. Operation Research Society of America (1976). [Google Scholar]
  • G. Klein, H. Moskowitz and A. Ravindran, Interactive multiobjective optimization under uncertainty. Manage. Sci. 36 (1990) 58–75. [Google Scholar]
  • M. Kumral, Application of chance-constrained programming based on multiobjective simulated annealing to solve mineral blending problem. Eng. Optim. 35 (2003) 661–673. [Google Scholar]
  • H.A. Le Thi and T. Pham Dinh, Solving a class of linearly constrained indefinite quadratic problems by DC algorithms. J. Global Optim. 11 (1997) 253–285. [Google Scholar]
  • H.A. Le Thi and T. Pham Dinh, A continuous approach for globally solving linearly constrained quadratic zero-one programming problems. Optimization 50 (2001) 93–120. [Google Scholar]
  • H.A. Le Thi and T. Pham Dinh, The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems. Ann. Oper. Res. 133 (2005) 23–46. [Google Scholar]
  • H.A. Le Thi, T. Pham Dinh and V.N. Huynh, Exact penalty and error bounds in DC programming. J. Glob. Opt. 52 (2002) 509–535. [Google Scholar]
  • H.A. Le Thi, T. Pham Dinh, C.N. Nguyen and V.T. Nguyen, DC programming techniques for solving a class of nonlinear bilevel programs. J. Glob. Opt. 44 (2009) 313–337. [Google Scholar]
  • LINDO Systems, Inc. LINGO. The modeling langage and optimizer (2017). http://www.lindo.com. [Google Scholar]
  • LINDO Systems, Inc., Optimization modelling with LINGO. Technical Support in China (2015). http://lindochina.com. [Google Scholar]
  • M.M. Munoz and F. Ruiz, Interest: an interval reference point based method for stochastic multiobjective programming problems. Eur. J. Oper. Res. 197 (2009) 25–35. [CrossRef] [Google Scholar]
  • W. Ogryczak, Multiple criteria linear programming model for portfolio selection. Ann. Oper. Res. 97 (2000) 143–162. [Google Scholar]
  • T. Pham Dinh and H.A. Le Thi, Convex analysis approach to DC programming: theory, algorithms and applications (dedicated to Professor Hoang Tuy on the occasion of his 70th birthday). Acta Math. Vietnam. 22 (1997) 289–355. [Google Scholar]
  • T. Pham Dinh, C.N. Nguyen and H.A. Le Thi, DC programming and DCA for globally solving the value-at-risk. Comput. Manag. Sci. 6 (2009) 477–501. [Google Scholar]
  • C. Shing and H. Nagasawa, Interactive decision system in stochastic multi-objective portfolio selection. Int. J. Prod. Econ. 60, 61 (1999) 187–193. [Google Scholar]
  • I.M. Stancu-Minasian, Asupra problemei de risk minim multiplu I: cazul a dou funcii obiectiv. II: cazul ar (r > 2) funciiobiectiv, Stud. Cerc. Mat. 28 (1976) 617–623. [Google Scholar]
  • J. Teghem and P. Kunsch, Application of multiobjective stochastic linear programming to power systems planning. Eng. Costs Prod. Econ. 9 (1985) 83–89. [Google Scholar]
  • J. Teghem, D. Dufrane, M. Thauvoye and P.L. Kunsch, Strange, an interactive method for multiobjective stochastic linear programming under uncertainty. Eur. J. Oper. Res. 26 (1986) 65–82. [CrossRef] [Google Scholar]
  • J. Teghem, Strange-Momix: an interactive method for mixed integer linear programming, edited by R. Slowinski and J. Teghem. In: Stochastic versus fuzzy approaches to multiobjective mathematical programming under uncertainty. Kluwer, Dordrecht (1990) 101–115. [Google Scholar]
  • V. Vahidinasab and S. Jadid, Stochastic multiobjective self-scheduling of a power producer in joint energy & reserves markets. Electr. Power Syst. Res. 80 (2010) 760–769. [Google Scholar]
  • Z. Wang, X.P. Jia and L. Shi, Optimization of multi-product batch plant design under uncertainty with environmental considerations. Clean Technol. Environ. Policy 12 (2009) 273–282. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.