Open Access
Issue
RAIRO-Oper. Res.
Volume 55, Number 4, July-August 2021
Page(s) 2395 - 2412
DOI https://doi.org/10.1051/ro/2021106
Published online 16 August 2021
  • G. Allon and A. Federgruen, Competition in service industries. Oper. Res. 55 (2007) 37–55. [Google Scholar]
  • M.S. Bazaraa and C.M. Shetty, Nonlinear Programming. Theory and Algorithms. John Wiley & Sons (1979). [Google Scholar]
  • F. Bernstein and A. Federgruen, A general equilibrium model for industries with price and service competition. Oper. Res. 52 (2004) 868–886. [Google Scholar]
  • L.E. Cárdenas-Barrón and S.S. Sana, Multi-item EOQ inventory model in a two-layer supply chain while demand varies with promotional effort. Appl. Math. Model. 39 (2015) 6725–6737. [Google Scholar]
  • K. Chen and T. Xiao, Pricing and replenishment policies in a supply chain with competing retailers under different retail behaviors. Comput. Ind. Eng. 103 (2017) 145–157. [Google Scholar]
  • X. Chen, H. Zhang, M. Zhang and J. Chen, Optimal decisions in a retailer Stackelberg supply chain. Int. J. Prod. Econ. 187 (2017) 260–270. [Google Scholar]
  • T. Chernonog, Inventory and marketing policy in a supply chain of a perishable product. Int. J. Prod. Econ. 219 (2020) 259–274. [Google Scholar]
  • R.P. Covert and G.C. Philip, An EOQ model for items with Weibull distribution deterioration. AIIE Trans. 5 (1973) 323–326. [Google Scholar]
  • W.A. Donaldson, Inventory replenishment policy for a linear trend in demand – an analytical solution. J. Oper. Res. Soc. 28 (1977) 663–670. [Google Scholar]
  • S. Eilon and R.V. Mallaya, Issuing and pricing policy of semi-perishables. In: Proceedings of the 4th International Conference on Operational Research. Wiley-Interscience (1966) 205–215. [Google Scholar]
  • P.M. Ghare and G.H. Schrader, A model for exponentially decaying inventory system. J. Ind. Eng. 14 (1963) 238–243. [Google Scholar]
  • H. Ghashghaei and M. Mozafari, A game theoretic approach to coordinate pricing, ordering and co-op advertising in supply chains with stochastic demand. Sci. Iran. 27 (2020) 3289–3304. [Google Scholar]
  • D. Gligor, Re-examining supply chain fit: an assessment of moderating factors. J. Bus. Logistics 38 (2017) 253–265. [Google Scholar]
  • A. Hafezalkotob, R. Mahmoudi, E. Hajisami and H.M. Wee, Wholesale-retail pricing strategies under market risk and uncertain demand in supply chain using evolutionary game theory. Kybernetes 47 (2018) 1178–1201. [Google Scholar]
  • C.C. Hsieh and C.H. Wu, Capacity allocation, ordering, and pricing decisions in a supply chain with demand and supply uncertainties. Eur. J. Oper. Res. 184 (2008) 667–684. [Google Scholar]
  • J. Huang, M. Leng and M. Parlar, Demand functions in decision modeling: a comprehensive survey and research directions. Decis. Sci. 44 (2013) 557–609. [Google Scholar]
  • O. Kaya and A.L. Polat, Coordinated pricing and inventory decisions for perishable products. OR Spectr. 39 (2017) 589–606. [Google Scholar]
  • M. Kumar, P. Basu and B. Avittathur, Pricing and sourcing strategies for competing retailers in supply chains under disruption risk. Eur. J. Oper. Res. 265 (2018) 533–543. [Google Scholar]
  • B. Li, P. Chen, Q. Li and W. Wang, Dual-channel supply chain pricing decisions with a risk-averse retailer. Int. J. Prod. Res. 52 (2014) 7132–7147. [Google Scholar]
  • B. Liu, R. Zhang and M. Xiao, Joint decision on production and pricing for online dual channel supply chain system. Appl. Math. Model. 34 (2010) 4208–4218. [Google Scholar]
  • Z. Li, W. Yang, X. Liu and H. Taimoor, Coordination strategies in dual-channel supply chain considering innovation investment and different game ability. Kybernetes 49 (2019) 1581–1603. [Google Scholar]
  • R. Maihami and I. Nakhai Kamalabadi, Joint pricing and inventory control for non-instantaneous deteriorating items with partial backlogging and time and price dependent demand. Int. J. Prod. Econ. 136 (2012) 116–122. [Google Scholar]
  • R. Maihami, B. Karimi and S.M.T. Fatemi Ghomi, Pricing and inventory control in a supply chain of deteriorating items: a non-cooperative strategy with probabilistic parameters. Int. J. Appl. Comput. Math. 3 (2017) 2477–2499. [Google Scholar]
  • S. Min, Z.G. Zacharia and C.D. Smith, Defining supply chain management: in the past, present, and future. J. Bus. Logistics 40 (2019) 44–55. [Google Scholar]
  • J. Mo, F. Mi, F. Zhou and H. Pan, A note on an EOQ model with stock and price sensitive demand. Math. Comput. Model. 49 (2009) 2029–2036. [Google Scholar]
  • M. Mokhlesian and S.H. Zegordi, Application of multidivisional bi-level programming to coordinate pricing and inventory decisions in a multiproduct competitive supply chain. Int. J. Adv. Manuf. Technol. 71 (2014) 1975–1989. [Google Scholar]
  • H. Mokhtari, A. Naimi-Sadigh and A. Salmasnia, A computational approach to economic production quantity model for perishable products with backordering shortage and stock-dependent demand. Sci. Iran. Trans. E Ind. Eng. 24 (2017) 2138–2151. [Google Scholar]
  • M. Mozafari, B. Karimi and M. Mahootchi, A differential Stackelberg game for pricing on a freight transportation network with one dominant shipper and multiple oligopolistic carriers. Sci. Iran. 23 (2016) 2391–2406. [Google Scholar]
  • M. Mozafari, A. Naimi-Sadigh and A.H. Seddighi, Possibilistic cooperative advertising and pricing games for a two-echelon supply chain. Soft Comput. 25 (2021) 6957–6971. [Google Scholar]
  • A. Naimi Sadigh, S.K. Chaharsooghi and M. Sheikhmohammady, Game-theoretic analysis of coordinating pricing and marketing decisions in a multi-product multi-echelon supply chain. Sci. Iran. 23 (2016) 1459–1473. [Google Scholar]
  • A. Naimi-Sadigh, S.K. Chaharsooghi and M. Mozafari, Optimal pricing and advertising decisions with suppliers’ oligopoly competition: Stakelberg-Nash game structures. J. Ind. Manage. Optim. 17 (2021) 1423. [Google Scholar]
  • F. Otrodi, R.G. Yaghin and S.A. Torabi, Joint pricing and lot-sizing for a perishable item under two-level trade credit with multiple demand classes. Comput. Ind. Eng. 127 (2019) 761–777. [Google Scholar]
  • A. Salmasnia and A. Talesh-Kazemi, Integrating inventory planning, pricing and maintenance for perishable products in a two-component parallel manufacturing system with common cause failures. Oper. Res. J. (2020). DOI: 10.1007/s12351-020-00590-6. [Google Scholar]
  • H.D. Sherali, A.L. Soyster and F.H. Murphy, Stackelberg–Nash–Cournot equilibria: characterizations and computations. Oper. Res. 31 (1983) 253–276. [Google Scholar]
  • D. Simchi-Levi, Designing and Managing The Supply Chain. Mcgraw-Hill College (2005). [Google Scholar]
  • W. Soon, A review of multi-product pricing models. Appl. Math. Comput. 217 (2011) 8149–8165. [Google Scholar]
  • A.A. Taleizadeh and M. Nematollahi, An inventory control problem for deteriorating items with back-ordering and financial considerations. Appl. Math. Modell. 38 (2014) 93–109. [Google Scholar]
  • M. Tavana, J. Prafulla and J. Rappaport, A comprehensive set of models of intra and inter-organizational coordination for marketing and inventory decisions in a supply chain. Int. J. Integr. Supply Manage. 2 (2006) 251–284. [Google Scholar]
  • J.T. Wang, S. Zhang, C.H. Wu, J.J. Yu, C.B. Chen and S.B. Tsai, Time-sensitive markdown strategies for perishable products based on dynamic quality evaluation. Kybernetes 50 (2020) 165–180. [Google Scholar]
  • T.M. Whitin, Inventory control and price theory. Manage. Sci. 2 (1955) 61–68. [Google Scholar]
  • K.S. Wu, EOQ inventory model for items with Weibull distribution deterioration, time-varying demand and partial backlogging. Int. J. Syst. Sci. 33 (2002) 323–329. [Google Scholar]
  • P.C. Yang and H.M. Wee, An integrated multi-lot-size production inventory model for deteriorating item. Comput. Oper. Res. 30 (2003) 671–682. [Google Scholar]
  • S.L. Yang and Y.W. Zhou, Two-echelon supply chain models: considering duopolistic retailers’ different competitive behaviors. Int. J. Prod. Econ. 103 (2006) 104–116. [Google Scholar]
  • C.T. Yang, L.Y. Ouyang and H.H. Wu, Retailer’s optimal pricing and ordering policies for non-instantaneous deteriorating items with price-dependent demand and partial backlogging. Math. Prob. Eng. 2009 (2009) 1–18. [Google Scholar]
  • P.C. Yang, S.L. Chung, H.M. Wee, E. Zahara and C.Y. Peng, Collaboration for a closed-loop deteriorating inventory supply chain with multi-retailer and price-sensitive demand. Int. J. Prod. Econ. 143 (2013) 557–566. [Google Scholar]
  • R. Yin and K. Rajaram, Joint pricing and inventory control with a Markovian demand model. Eur. J. Oper. Res. 182 (2007) 113–126. [Google Scholar]
  • J.L. Zhang, J. Chen and C.Y. Lee, Joint optimization on pricing, promotion and inventory control with stochastic demand. Int. J. Prod. Econ. 116 (2008) 190–198. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.