Open Access
Issue
RAIRO-Oper. Res.
Volume 55, Number 4, July-August 2021
Page(s) 2423 - 2437
DOI https://doi.org/10.1051/ro/2021110
Published online 25 August 2021
  • J.R. Artalejo, A. Economou and M.J. Lopez-Herrero, Analysis of a smultiserver queue with setup times. Queueing Syst. 51 (2005) 53–76. [CrossRef] [Google Scholar]
  • O. Bountali, A. Economou, Equilibrium joining strategies in batch service queueing systems. Eur. J. Oper. Res. 260 (2017) 1142–1151. [CrossRef] [Google Scholar]
  • Q. Bu, Y. Song, L. Liu, Tail asymptotics for a state dependent bulk matching queueing system with impatient customers. J. Math. Anal. Appl. 98 (2020) 123–826. [Google Scholar]
  • A. Burnetas, A. Economou, Equilibrium customer strategies in a single server markovian queue with setup times. Queueing Syst. 56 (2007) 213–228. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Burnetas, A. Economou, G. Vasiliadis, Strategic customer behavior in a queueing system with delayed observations. Queueing Syst. 86 (2017) 1–30. [CrossRef] [Google Scholar]
  • S. Cui, X. Su, S. Veeraraghavan, A model of rational retrials in queues. Oper. Res. 67 (2019) 1699–1718. [CrossRef] [Google Scholar]
  • A. Economou, S. Kanta, Equilibrium balking strategies in the observable single-server queue with breakdowns and repairs. Oper. Res. Lett. 36 (2008) 696–699. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Economou, A. Gómez-Corral, S. Kanta, Optimal balking strategies in single-server queues with general service and vacation times. Perform. Eval. 68 (2011) 967–982. [CrossRef] [Google Scholar]
  • N.M. Edelson, D.K. Hilderbrand, Congestion tolls for poisson queuing processes. Econometrica 43 (1975) 81–92. [Google Scholar]
  • P. Guo, R. Hassin, Strategic behavior and social optimization in markovian vacation queues. Oper. Res. 59 (2011) 986–997. [CrossRef] [MathSciNet] [Google Scholar]
  • P. Guo, R. Hassin, Strategic behavior and social optimization in markovian vacation queues: the case of heterogeneous customers. Eur. J. Oper. Res. 222 (2012) 278–286. [CrossRef] [Google Scholar]
  • P. Guo, P. Zipkin, Analysis and comparison of queues with different levels of delay information. Manage. Sci. 53 (2007) 962–970. [CrossRef] [Google Scholar]
  • R. Hassin, Rational queueing. CRC Press, Boca Raton (2016). [CrossRef] [Google Scholar]
  • R. Hassin, M. Haviv, To Queue or not to Queue: Equilibrium Behavior in Queueing Systems. Kluwer Academic Publishers, Boston (2003). [CrossRef] [Google Scholar]
  • R. Hassin, R.I. Snitkovsky, Strategic customer behavior in a queueing system with a loss subsystem. Queueing Syst. 86 (2017) 1–27. [CrossRef] [Google Scholar]
  • A. Koshman-Kaz, R. Hassin, Optimal control of a queue with high-low delay announcements: The significance of the queue. In: ValueTools ‘14: International Conference on Performance Evaluation Methodologies and Tools (2014) 233–240. [Google Scholar]
  • Z. Liu, S. Yu, The m/m/c queueing system in a random environment. J. Math. Anal. Appl. 436 (2016) 556–567. [CrossRef] [Google Scholar]
  • P. Naor, The regulation of queue size by levying tolls. Econometrica: J Econ. Soc. 37 (1969) 15–24. [Google Scholar]
  • A. Nazarov, J. Sztrik, A. Kvach, T. Bérczes, Asymptotic analysis of finite-source m/m/1 retrial queueing system with collisions and server subject to breakdowns and repairs. Ann. Oper. Res. 277 (2019) 213–229. [CrossRef] [Google Scholar]
  • E. Simhon, Y. Hayel, D. Starobinski, Q. Zhu, Optimal information disclosure policies in strategic queueing games. Oper. Res. Lett. 44 (2016) 109–113. [CrossRef] [Google Scholar]
  • S. Stidham Jr, Optimal design of queueing systems. CRC Press, Boca Raton (2009). [CrossRef] [Google Scholar]
  • W. Sun, S. Li, E. Cheng-Guo, Equilibrium and optimal balking strategies of customers in markovian queues with multiple vacations and n-policy. Appl. Math. Modell. 40 (2016) 284–301. [CrossRef] [Google Scholar]
  • H. Takagi, Queueing Analysis: Vacation and Priority Systems, Part 1, North-Holland. North-Holland (1991). [Google Scholar]
  • N. Tian, Z.G. Zhang, Vacation Queueing Models: Theory and Applications. Vol. 93 of: Vacation Queueing Models: Theory and Applications. Springer-Verlag, US (2006). [CrossRef] [Google Scholar]
  • M. Yu, J. Tang, F. Kong, C. Chang, Fluid models for call centers with delay announcement and retrials. Knowl. Based Syst. 149 (2018) 8–34. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.