Open Access
Issue
RAIRO-Oper. Res.
Volume 55, Number 5, September-October 2021
Page(s) 2861 - 2881
DOI https://doi.org/10.1051/ro/2021131
Published online 29 September 2021
  • K.B. Atici and V.V. Podinovski, Mixed partial elasticities in constant returns-to-scale production technologies. Eur. J. Oper. Res. 220 (2012) 262–269. [Google Scholar]
  • B.M. Balk, R. Färe and G. Karagiannis, On directional scale elasticities. J. Prod. Anal. 43 (2015) 99–104. [Google Scholar]
  • R.D. Banker, Estimating most productive scale size using data envelopment analysis. Eur. J. Oper. Res. 17 (1984) 35–44. [Google Scholar]
  • R.D. Banker and R.M. Thrall, Estimation of returns to scale using data envelopment analysis. Eur. J. Oper. Res. 62 (1992) 74–84. [CrossRef] [Google Scholar]
  • R.D. Banker, A. Charnes and W.W. Cooper, Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manage. Sci. 30 (1984) 1078–1092. [Google Scholar]
  • R.D. Banker, W.W. Cooper, L.M. Seiford and J. Zhu, Returns to scale in DEA. In: Handbook on Data Envelopment Analysis. Springer, Boston, MA (2011). [Google Scholar]
  • A. Emrouznejad and G.L. Yang, A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Soc.-Econ. Planning Sci. 61 (2018) 4–8. [CrossRef] [Google Scholar]
  • R. Färe, S. Grosskopf and C.K. Lovell, The Measurement of Efficiency of Production. Springer, Netherlands (1985). [Google Scholar]
  • R. Färe, S. Grosskopf and C.K. Lovell, Production Frontiers. Cambridge University Press (1994). [Google Scholar]
  • M.J. Farrell, The measurement of productive efficiency. J. R. Stat. Soc.: Ser. A (General) 120 (1957) 253–281. [CrossRef] [Google Scholar]
  • F.R. Førsund and L. Hjalmarsson, Calculating scale elasticity in DEA models. J. Oper. Res. Soc. 55 (2004) 1023–1038. [CrossRef] [Google Scholar]
  • F.R. Førsund, L. Hjalmarsson, V.E. Krivonozhko and O.B. Utkin, Calculation of scale elasticities in DEA models: direct and indirect approaches. J. Prod. Anal. 28 (2007) 45–56. [CrossRef] [Google Scholar]
  • F.R. Førsund, S.A. Kittelsen and V.E. Krivonozhko, Farrell revisited–Visualizing properties of DEA production frontiers. J. Oper. Res. Soc. 60 (2009) 1535–1545. [CrossRef] [Google Scholar]
  • R. Frisch, Theory of Production. D. Reidel Publ. Co, Dordrecht, Holland (1965). [Google Scholar]
  • B. Golany and G. Yu, Estimating returns to scale in DEA. Eur. J. Oper. Res. 103 (1997) 28–37. [CrossRef] [Google Scholar]
  • M. Mirjaberi and R. Kazemi Matin, On the calculation of directional scale elasticity in data envelopment analysis. Asia-Pac. J. Oper. Res. 33 (2016) 1650026. [CrossRef] [Google Scholar]
  • V.V. Podinovski, Returns to scale in convex production technologies. Eur. J. Oper. Res. 258 (2017) 970–982. [CrossRef] [Google Scholar]
  • V.V. Podinovski and F.R. Førsund, Differential characteristics of efficient frontiers in data envelopment analysis. Oper. Res. 58 (2010) 1743–1754. [CrossRef] [Google Scholar]
  • V.V. Podinovski, F.R. Førsund and V.E. Krivonozhko, A simple derivation of scale elasticity in data envelopment analysis. Eur. J. Oper. Res. 197 (2009) 149–153. [CrossRef] [Google Scholar]
  • V.V. Podinovski, R.G. Chambers, K.B. Atici and I.D. Deineko, Marginal values and returns to scale for nonparametric production frontiers. Oper. Res. 64 (2016) 236–250. [CrossRef] [Google Scholar]
  • V.V. Podinovski, O.B. Olesen and C.S. Sarrico, Nonparametric production technologies with multiple component processes. Oper. Res. 66 (2017) 282–300. [Google Scholar]
  • L.M. Seiford and J. Zhu, An investigation of returns to scale in data envelopment analysis. Omega 27 (1999) 1–11. [CrossRef] [Google Scholar]
  • K. Tone and B.K. Sahoo, Scale, indivisibilities and production function in data envelopment analysis. Int. J. Prod. Econ. 84 (2003) 165–192. [CrossRef] [Google Scholar]
  • M. Tracy, Government and Agriculture in Western Europe. Harvester Wheatsheaf, New York (1989). [Google Scholar]
  • G.L. Yang and W.B. Liu, Estimating directional returns to scale in DEA. INFOR: Inf. Syst. Oper. Res. 55 (3) 243–273. [Google Scholar]
  • G.L. Yang, R. Rousseau, L.Y. Yang and W.B. Liu, A study on directional returns to scale. J. Inf. 8 (2014) 628–641. [Google Scholar]
  • V. Zelenyuk, A scale elasticity measure for directional distance function and its dual: theory and DEA estimation. Eur. J. Oper. Res. 228 (2013) 592–600. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.