Open Access
Issue
RAIRO-Oper. Res.
Volume 55, Number 6, November-December 2021
Page(s) 3773 - 3795
DOI https://doi.org/10.1051/ro/2021173
Published online 17 December 2021
  • V.S. Abedi, Compartmental diffusion modeling: describing customer heterogeneity & communication network to support decisions for new product introductions. Phys. A Stat. Mech. App. 536 (2019) 1–18. [Google Scholar]
  • M.D. Albritton and P.R. McMullen, Optimal product design using a colony of virtual ants. Eur. J. Oper. Res. 176 (2007) 498–520. [CrossRef] [Google Scholar]
  • R. Aydin and F. Badurdeen, Sustainable product line design considering a multi-lifecycle approach. Resour. Conserv. Recycl. 149 (2019) 727–737. [CrossRef] [Google Scholar]
  • A. Aydogdu, A. Akin and M.P. Saka, Design optimization of real world steel space frames using artificial bee colony algorithm with levy flight distribution. Adv. Eng. Softw. 92 (2016) 1–14. [CrossRef] [Google Scholar]
  • A. Belloni, R. Freund, M. Selove and D. Simester, Optimizing product line designs: Efficient methods and comparisons. Manage. Sci. 54 (2008) 1544–1552. [CrossRef] [Google Scholar]
  • R.A. Bradley and M.E. Terry, Rank analysis of incomplete block designs: the method of paired comparisons. Biometrika 39 (1952) 324–345. [MathSciNet] [Google Scholar]
  • M. Chen, S. Chen and P. Chang, Imperial competitive algorithm with policy learning for the traveling salesman problem. Soft Comput. 21 (2015) 1–13. [Google Scholar]
  • J. Daaboul, C.D. Cunha, A. Bernard and F. Laroche, Design for mass customization: product variety vs. process variety. CIRP Ann. – Manuf. Technol. 60 (2011) 169–174. [CrossRef] [Google Scholar]
  • R. Dou, Y. Zhang and G. Nan, Customer-oriented product collaborative customization based on design iteration for tablet personal computer configuration. Comput. Ind. Eng. 99 (2016) 474–486. [CrossRef] [Google Scholar]
  • M. Draganska and D.C. Jain, Product-line length as a competitive tool. J. Econ. Manage. Strategy 14 (2005) 1–28. [CrossRef] [Google Scholar]
  • H. Faris, A.M. Al-Zoubi, A.A. Heidari, I. Aljarah, M. Mafarja, M.A. Hassonah and H. Fujita, An intelligent system for spam detection and identification of the most relevant features based on evolutionary Random Weight Networks. Inf. Fusion 48 (2019) 67–83. [CrossRef] [Google Scholar]
  • F.S. Fogliatto, G.J.C. da Silveira and D. Borenstein, The mass customization decade: an updated review of the literature. Int. J. Prod. Econ. 138 (2012) 14–25. [CrossRef] [Google Scholar]
  • Y. Fu, M. Zhou, X. Guo and L. Qi, Scheduling dual-objective stochastic hybrid flow shop with deteriorating jobs via bi-population evolutionary algorithm. IEEE Trans. Syst. Man Cybern. Syst. 50 (2020) 5037–5048. [CrossRef] [Google Scholar]
  • K. Gao, Z. Cao, L. Zhang, Z. Chen, Y. Han and Q. Pan, A review on swarm intelligence and evolutionary algorithms for solving flexible job shop scheduling problems. IEEE-CAA J. Autom. Sinica 6 (2019) 904–916. [CrossRef] [Google Scholar]
  • M. Ghahramani, Y. Qiao and M. Zhou, AI-based modeling and data-driven evaluation for smart manufacturing processes. IEEE-CAA J. Autom. Sinica 7 (2020) 1026–1037. [CrossRef] [Google Scholar]
  • B. Ghasemishabankareh, N. Shahsavari-Pour, M.A. Basiri and X. Li, A hybrid imperialist competitive algorithm for the flexible job shop problem. In: Artificial Life and Computational Intelligence, edited by T. Ray, R. Sarker and X. Li. Springer International Publishing, Cham (2016) 221–233. [Google Scholar]
  • M. Goswami, Y. Daultani and M.K. Tiwaris, An integrated framework for product line design for modular products: product attribute and functionality-driven perspective. Int. J. Prod. Res. 55 (2017) 3862–3885. [CrossRef] [Google Scholar]
  • S. Gupta and V. Krishnan, Integrated component and supplier selection for a product family. Prod. Oper. Manage. 8 (2010) 163–182. [Google Scholar]
  • X. Han, Y. Dong, L. Yue, Q. Xu, G. Xie and X. Xu, State-transition simulated annealing algorithm for constrained and unconstrained multi-objective optimization problems. Appl. Intell. 10 (2020) 1–13. [Google Scholar]
  • C. Jiao and X. Zhu, Optimal design of sales and maintenance under the renewable warranty. RAIRO-Oper. Res. 52 (2018) 529–542. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • S. Karimi, Z. Ardalan, B. Naderi and M. Mohammadi, Scheduling flexible job-shops with transportation times: mathematical models and a discrete imperialist competitive algorithm. Appl. Math. Model. 41 (2017) 667–682. [CrossRef] [MathSciNet] [Google Scholar]
  • R. Kia, A. Baboli, N. Javadian, R. Tavakkoli-Moghaddam, M. Kazemi and J. Khorrami, Solving a group layout design model of a dynamic cellular manufacturing system with alternative process routings, lot splitting and flexible reconfiguration by simulated annealing. Comput. Oper. Res. 39 (2012) 2642–2658. [CrossRef] [MathSciNet] [Google Scholar]
  • R. Kohli and R. Krishnamurti, Optimal product design using conjoint analysis: computational complexity and algorithms. Eur. J. Oper. Res. 40 (1989) 186–195. [CrossRef] [Google Scholar]
  • R. Kohli and R. Sukumar, Heuristics for product line design using conjoint analysis. Manage. Sci. 36 (1990) 1464–1478. [CrossRef] [Google Scholar]
  • S. Kumar and A.K. Chatterjee, A profit maximising product line optimization model under monopolistic competition. Int. J. Prod. Res. 53 (2015) 1584–1595. [CrossRef] [Google Scholar]
  • H. Li, S. Webster and G. Yu, Product design under multinomial logit choices: optimization of quality and prices in an evolving product line. Manuf. Serv. Oper. Manage. 22 (2020) 1–15. [CrossRef] [Google Scholar]
  • Y. Li, C. Wang, L. Gao, Y. Song and X. Li, An improved simulated annealing algorithm based on residual network for permutation flow shop scheduling. Complex Intell. Syst. 7 (2021) 1173–1183. [CrossRef] [Google Scholar]
  • C. Liu and J. Wang, Cell formation and task scheduling considering multi-functional resource and part movement using hybrid simulated annealing. Int. J. Comput. Intel. Syst. 9 (2016) 765–777. [CrossRef] [Google Scholar]
  • C. Liu, J. Wang and J.Y.-T. Leung, Worker assignment and production planning with learning and forgetting in manufacturing cells by hybrid bacteria foraging algorithm. Comput. Ind. Eng. 96 (2016) 162–179. [CrossRef] [Google Scholar]
  • C. Liu, J. Wang, J.Y.-T. Leung and K. Li, Solving cell formation and task scheduling in cellular manufacturing system by discrete bacteria foraging algorithm. Int. J. Prod. Res. 54 (2016) 923–944. [CrossRef] [Google Scholar]
  • C. Liu, J. Wang and J.Y.-T. Leung, Integrated bacteria foraging algorithm for cellular manufacturing in supply chain considering facility transfer and production planning. Appl. Soft Comput. 62 (2018) 602–618. [CrossRef] [Google Scholar]
  • C. Liu, J. Wang and M. Zhou, Reconfiguration of virtual cellular manufacturing systems via improved imperialist competitive approach. IEEE Trans. Autom. Sci. Eng. 16 (2019) 1301–1314. [CrossRef] [Google Scholar]
  • C. Liu, Y. Liu and J. Wang, A revised imperialist competition algorithm for cellular manufacturing optimization based on product line design. J. Ind. Manage. Optim. (2021). DOI:10.3934/jimo.2021175. [Google Scholar]
  • X. Liu, J. Chen and A. Li, Optimisation of line configuration and balancing for reconfigurable transfer lines considering demand uncertainty. Int. J. Prod. Res. 59 (2021) 444–466. [CrossRef] [Google Scholar]
  • D.R. Luce, Individual choice behavior: a theoretical analysis. J. Am. Stat. Assoc. 67 (1959) 1–15. [Google Scholar]
  • L. Luo, Product line design for consumer durables: an integrated marketing and engineering approach. J. Marketing Res. 48 (2011) 128–139. [CrossRef] [Google Scholar]
  • X. Luo, W. Li, C.K. Kwong and Y. Cao, Optimisation of product family design with consideration of supply risk and discount. Res. Eng. Design 27 (2016) 37–54. [CrossRef] [MathSciNet] [Google Scholar]
  • D.T. Matt, E. Rauch and P. Dallasega, Trends towards distributed manufacturing systems and modern forms for their design. Proc. CIRP 33 (2015) 185–190. [CrossRef] [Google Scholar]
  • V. Modrak and Z. Soltysova, Management of product configuration conflicts to increase the sustainability of mass customization. Sustainability 12 (2020) 1–14. [PubMed] [Google Scholar]
  • V. Modrak, D. Marton and S. Bednar, The influence of mass customization strategy on configuration complexity of assembly systems. Proc. CIRP 33 (2015) 538–543. [CrossRef] [Google Scholar]
  • P.W. Murray, B. Agard and M.A. Barajas, Forecast of individual customer’s demand from a large and noisy dataset. Comput. Ind. Eng. 118 (2018) 33–43. [CrossRef] [Google Scholar]
  • S.S. Pal and S. Kar, Forecasting stock market price by using fuzzified choquet integral based fuzzy measures with genetic algorithm for parameter optimization. RAIRO-Oper. Res. 54 (2020) 597–614. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall Inc, New Jersey, USA (1982). [Google Scholar]
  • M.J. Rungtusanatham and F. Salvador, From mass production to mass customization: Hindrance factors, structural inertia and transition hazard. Prod. Oper. Manage. 17 (2010) 385–396. [Google Scholar]
  • F. Sarayloo and R. Tavakkoli-Moghaddam, Imperialistic competitive algorithm for solving a dynamic cell formation problem with production planning. In: Advanced Intelligent Computing Theories and Applications, edited by D.S. Huang, Z. Zhao, V. Bevilacqua and J.C. Figueroa. International Conference on Advanced Intelligent Computing Theories & Applications: Intelligent Computing. Springer, Berlin, Heidelberg (2010) 266–276. [CrossRef] [Google Scholar]
  • C. Saridakis, S. Tsafarakis, P. Delias, G. Baltas and N. Matsatsinis, Optimizing differentiation and commonality levels among models in car line-ups: An empirical application of a nature-inspired heuristic mechanism. Expert Syst. App. 42 (2014) 2323–2335. [Google Scholar]
  • X. Shang, F. Wang, G. Xiong, T.R. Nyberg, Y. Yuan, S. Liu, C. Guo and S. Bao, Social manufacturing for high-end apparel customization. IEEE-CAA J. Autom. Sinica 5 (2018) 489–500. [CrossRef] [Google Scholar]
  • J. Simon, M. Trojanova, J. Zbihlej and J. Sarosi, Mass customization model in food industry using industry 4.0 standard with fuzzy-based multi-criteria decision making methodology. Adv. Mech. Eng. 10 (2018) 113–145. [Google Scholar]
  • P.B. Tookanlou and H. Wong, Determining the optimal customization levels, lead times, and inventory positioning in vertical product differentiation. Int. J. Prod. Econ. 221 (2020) 1–20. [Google Scholar]
  • P.B. Tookanlou and H. Wong, Product line design with vertical and horizontal consumer heterogeneity: the effect of distribution channel structure on the optimal quality and customization levels. Eur. J. Market. 55 (2020) 95–131. [Google Scholar]
  • S. Tsafarakis, Y. Marinakis and N. Matsatsinis, Particle swarm optimization for optimal product line design. Int. J. Res. Market. 28 (2011) 13–22. [CrossRef] [Google Scholar]
  • S. Tsafarakis, C. Saridakis, G. Baltas and N. Matsatsinis, Hybrid particle swarm optimization with mutation for optimizing industrial product lines: an application to a mixed solution space considering both discrete and continuous design variables. Ind. Marketing Manage. 42 (2013) 496–506. [CrossRef] [Google Scholar]
  • S. Tsafarakis, K. Zervoudakis, A. Andronikidis and E. Altsitsiadis, Fuzzy self-tuning differential evolution for optimal product line design. Eur. J. Oper. Res. 287 (2020) 1–9. [Google Scholar]
  • S. Tsafarakis, K. Zervoudakis, A. Andronikidis and E. Altsitsiadis, Fuzzy self-tuning differential evolution for optimal product line design. Eur. J. Oper. Res. 287 (2020) 1161–1169. [CrossRef] [Google Scholar]
  • S. Vinodh, G. Sundararaj, S.R. Devadasan, D. Kuttalingam and D. Rajanayagam, Amalgamation of mass customisation and agile manufacturing concepts: the theory and implementation study in an electronics switches manufacturing company. Int. J. Prod. Res. 48 (2010) 2141–2164. [CrossRef] [Google Scholar]
  • Y. Wang, H. Ma, J. Yang and K. Wang, Industry 4.0: A way from mass customization to mass personalization production. Adv. Manuf. 5 (2017) 311–320. [CrossRef] [Google Scholar]
  • J. Wang, C. Liu and K. Li, A hybrid simulated annealing for scheduling in dual resource cellular manufacturing system considering worker movement. Automatika 60 (2019) 172–180. [CrossRef] [Google Scholar]
  • Y. Wang, X. Shang, R. Qin, G. Xiong and T.R. Nyberg, Social manufacturing: a paradigm shift for smart prosumers in the era of societies 5.0. IEEE Trans. Comput. Soc. Syst. 6 (2019) 822–829. [CrossRef] [Google Scholar]
  • G. Wei, Q. Wu and M. Zhou, A hybrid probabilistic multiobjective evolutionary algorithm for commercial recommendation systems. IEEE Trans. Comput. Soc. Syst. 8 (2021) 589–598. [CrossRef] [Google Scholar]
  • G. Xiong, F. Wang, T.R. Nyberg, X. Shang, M. Zhou, Z. Shen, S. Li and C. Guo, From mind to products: towards social manufacturing and service. IEEE-CAA J. Autom. Sinica 5 (2018) 47–57. [CrossRef] [Google Scholar]
  • L. Yin, M. He, W. Xie, F. Yuan, D. Chen and Y. Sun, A quantitative model of universalization, serialization and modularization on equipment systems. Phys. A Stat. Mech. App. 508 (2018) 359–366. [CrossRef] [Google Scholar]
  • H. Yuan, J. Bi and M. Zhou, Multiqueue scheduling of heterogeneous tasks with bounded response time in hybrid green IaaS clouds. IEEE Trans. Ind. Inf. 15 (2019) 5404–5412. [CrossRef] [Google Scholar]
  • H. Yuan, M. Zhou, Q. Liu and A. Abusorrah, Fine-grained resource provisioning and task scheduling for heterogeneous applications in distributed green clouds. IEEE-CAA J. Autom. Sinica 7 (2020) 1380–1393. [Google Scholar]
  • X. Zhang, X. Ming, Z. Liu, Y. Qu and D. Yin, State-of-the-art review of customer to business (C2B) model. Comput. Ind. Eng. 132 (2019) 207–222. [CrossRef] [Google Scholar]
  • Y. Zhang, X. Hu and C. Wu, Improved imperialist competitive algorithms for rebalancing multi-objective two-sided assembly lines with space and resource constraints. Int. J. Prod. Res. 58 (2020) 3589–3617. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.