Open Access
RAIRO-Oper. Res.
Volume 56, Number 3, May-June 2022
Page(s) 1089 - 1117
Published online 12 May 2022
  • A.K. Aboul-Hassan, S. Raiba and F. Taboly. A discrete-time Geo/G/1 queue with general retrial times and balking customers. J. Korean Stat. Soc. 37 (2008) 335–348. [CrossRef] [Google Scholar]
  • A.K. Aboul-Hassan, S. Raiba and F. Taboly. Performance evaluation of a discrete-time GeoX/G/1 retrial queue with general retrial times. Comput. Math. Appl. 58 (2009) 548–557. [CrossRef] [MathSciNet] [Google Scholar]
  • A.S. Alfa. Applied Discrete-time Queues. Springer (2015). [Google Scholar]
  • A.S. Alfa, Queueing Theory for Telecommunications – Discrete Time Modelling of a Single Node System. Springer (2010). [CrossRef] [Google Scholar]
  • G. Anupam, G. Choudhaury and S. Dharmaraja, Performance analysis of DRX mechanism using batch arrival vacation queueing system with N-policy in LTE-A networks. Ann. Telecommun. 75 (2020) 353–367. [CrossRef] [Google Scholar]
  • J.R. Artalejoa, A.N. Dudinb and V.I. Klimenokb, Stationary analysis of a retrial queue with preemptive repeated attempts. Oper. Res. Lett. 28 (2001) 173–180. [CrossRef] [MathSciNet] [Google Scholar]
  • J.R. Artalejo, I. Atencia and P. Moreno, A discrete-time Geo[X]/G/1 retrial queue with control of admission. Appl. Math. Modell. 29 (2005) 1100–1120. [CrossRef] [Google Scholar]
  • I. Atencia and P. Moreno, A discrete-time Geo/G/1 retrial queue with general retrial times. Queueng Syst. 48 (2004) 5–21. [CrossRef] [Google Scholar]
  • F.M. Chang and J.C. Ke, On a batch retrial model with J vacations. J. Comput. Appl. Math. 232 (2009) 402–414. [CrossRef] [MathSciNet] [Google Scholar]
  • G. Choudhurya, L. Tadj and K. Dekaa, A batch arrival retrial queueing system with two phases of service and service interruption. Comput. Math. Appl. 59 (2010) 437–450. [CrossRef] [MathSciNet] [Google Scholar]
  • I. Dimitriou, On the power series approximations of a structured batch arrival two-class retrial system with weighted fair orbit queues. Perform. Eval. 132 (2019) 38–56. [CrossRef] [Google Scholar]
  • B.T. Doshi, Queueing systems with vacations: a survey. Queueing Syst. 1 (1986) 29–66. [CrossRef] [Google Scholar]
  • G.I. Falin and J.G.C. Templeton, Retrial Queues. Chapman and Hall, London (1997). [CrossRef] [Google Scholar]
  • S. Gao and J. Wang, Discrete-time Geo[X]/G/1 retrial queue with general retrial times, working vacations and vacation interruption. Qual. Technol. Quant. Manag. 10 (2013) 495–512. [CrossRef] [Google Scholar]
  • A. Gomez-Corral, A bibliographical guide to the analysis of retrial queues through matrix analytic techniques. Ann. Oper. Res. 141 (2006) 163–191. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Haridass and R. Arumuganathan, Analysis of a single server batch arrival retrial queueing system with modified vacations and N-policy. RAIRO-Oper. Res. 49 (2014) 279–296. [Google Scholar]
  • J.J. Hunter, Mathematical Techniques of Applied Probability: Discrete-time Models: Techniques and Applications. Vol 2. Academic Press, New York (1983). [Google Scholar]
  • V. Jailaxmi and R. Arumuganathan, Analysis of a retrial queue with multiple vacations and state dependent arrivals. RAIRO-Oper. Res. 49 (2015) 619–634. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • T. Jiang, Tail asymptotics for a batch service polling system with retrials and non-persistent customers. J. Math. Anal. Appl. 459 (2008) 893–905. [Google Scholar]
  • Z. Liu and Y. Song, Geo/Geo/1 retrial queue with non-persistent customers and working vacations. J. Appl. Math. Comput. 42 (2013) 103–115. [CrossRef] [MathSciNet] [Google Scholar]
  • G. Malik and S. Upadhyaya, Single vacation policy for discrete-time retrial queue with two types of customers. In: Strategic System Assurance and Business Analytics. Springer, Singapore (2020) 335–349. [CrossRef] [Google Scholar]
  • R. Nobel, Retrial queueing models in discrete time: a short survey of some late arrival models. Ann. Oper. Res. 247 (2016) 37–63. [Google Scholar]
  • E. Rosenberg and U. Yechiali, The MX/G/1 queue with single and multiple vacations under the LIFO service regime. Oper. Res. Lett. 14 (1993) 171–179. [CrossRef] [MathSciNet] [Google Scholar]
  • L.D. Servi and S.G. Finn, M/M/1 queues with working vacations. Perform. Eval. 50 (2002) 41–52. [CrossRef] [Google Scholar]
  • R. Sudhesh, A. Azhagappan and S. Dharmaraja, Transient Analysis of M/M/1 queue with working vacation, heterogeneous service and customers’ impatience. RAIRO-Oper. Res. 51 (2017) 591–606. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • H. Tagaki and D. Wu, M/G/1 queue with multiple working vacations. Perform. Eval. 63 (2006) 654–681. [CrossRef] [Google Scholar]
  • H. Takagi, Queueing analysis: a foundation of performance evaluation. In: Vacations and Priority Systems, Part 1. Vol. I. Amsterdam, North Holland, (1991). [Google Scholar]
  • M. Takahashi, H. Osawa and T. Fujisawa, Geo[X]/G/1 retrial queue with non-preemptive priority. Asia Pac. J. Oper. Res. 16 (1999) 215–234. [Google Scholar]
  • T.Y. Wang, J.C. Ke and F.M. Chang, Discrete-time Geo/G/1 queue with randomized vacations and at most J vacations. Appl. Math. Modell. 35 (2011) 2297–2308. [CrossRef] [Google Scholar]
  • T. Yang and H. Li, Steady-State queue size distribution of discrete-time PH/Geo/1 retrial queues. Math. Comput. Model. 30 (1999) 51–63. [CrossRef] [Google Scholar]
  • D. Yue and F. Zhang, A discrete-time Geo/G/1 retrial queue with J-vacation policy and general retrial times. J. Syst. Sci. Complex. 26 (2013) 556–571. [CrossRef] [MathSciNet] [Google Scholar]
  • F. Zhang and Z. Zhu, A Discrete-Time Geo/G/1 retrial queue with two different types of vacations. Math. Probl. Eng. 13 (2015) 1–12. [Google Scholar]
  • F. Zhang, D. Yue and Z. Zhu, A discrete time Geo/G/1 retrial queue with single vacation and starting failure. J. Inf. Comput. Sci. 8 (2011) 2751–2758. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.