Open Access
Issue
RAIRO-Oper. Res.
Volume 56, Number 4, July-August 2022
Page(s) 2929 - 2944
DOI https://doi.org/10.1051/ro/2022116
Published online 30 August 2022
  • A. Amirteimoori and S. Kordrostami, Production planning in data envelopment analysis. Int. J. Prod. Econ. 140 (2012) 212–218. [Google Scholar]
  • M. Asmild, J.C. Paradi and J. Pastor, Centralized resource allocation BCC models. Omega 37 (2009) 40–49. [CrossRef] [Google Scholar]
  • A.D. Athanassopoulos, Goal programming & data envelopment analysis (DEA) for target-based multi-level planning: Allocating central grants to the Greek local authorities. Eur. J. Oper. Res. 87 (1995) 535–550. [CrossRef] [Google Scholar]
  • A.D. Athanassopoulos, Decision support for target-based resource allocation of public services in multiunit and multilevel systems. Manag. Sci. 44 (1998) 173–187. [CrossRef] [Google Scholar]
  • L. Fang, H. Li and Z. Wang, Centralized resource allocation based on the bargaining approach. ASIA PAC J Oper. Res. 38 (2021) 1–18. [Google Scholar]
  • R.D. Banker, Estimating most productive scale size using data envelopment analysis. Eur. J. Oper. Res. 17 (1984) 35–44. [Google Scholar]
  • R.D. Banker and R.M. Thrall, Estimation of returns to scale using data envelopment analysis. Eur. J. Oper. Res. 62 (1992) 74–84. [CrossRef] [Google Scholar]
  • R.D. Banker, A. Charnes and W.W. Cooper, Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 30 (1984) 1078–1092. [Google Scholar]
  • J.E. Beasley, Allocating fixed costs and resources via data envelopment analysis. Eur. J. Oper. Res. 147 (2003) 198–216. [Google Scholar]
  • A. Charnes, W.W. Cooper and E. Rhodes, Measuring the efficiency of decision-making units. Eur. J. Oper. Res. 2 (1978) 429–444. [Google Scholar]
  • W.D. Cook and M. Kress, Characterizing an equitable allocation of shared costs, A DEA Approach. Eur. J. Oper. Res. 119 (1999) 652–661. [CrossRef] [Google Scholar]
  • W.D. Cook and J. Zhu, Allocation of shared costs among decision-making units. A DEA approach. Comput. Oper. Res. 32 (2005) 2171–2178. [Google Scholar]
  • Cooper W.W, Seiford L.M, and Tone K 2007 Data Envelopment Analysis. A Comprehensive Text with Models, Applications, References, and DEA-Solver Software. [Google Scholar]
  • J. Du, W.D. Cook, L. Liang and J. Zhu, Fixed cost and resource allocation based on DEA cross-efficiency. Eur. J. Oper. Res. 235 (2014) 206–214. [CrossRef] [Google Scholar]
  • L. Fang and C.Q. Zhang, Resource allocation based on the DEA model. J. Oper. Res. Soc. 59 (2008) 1136–1141. [CrossRef] [Google Scholar]
  • R. Fare, S. Grosskopf and C.A.K. Lovell, Production frontiers. Cambridge University Press (1994). [Google Scholar]
  • M.J. Farrell, The measurement of productive efficiency. J. R. Stat. Soc.: Ser. A (General) 120 (1957) 253–281. [Google Scholar]
  • B. Golany, An interactive MOLP procedure for the extension of DEA to effectiveness analysis. J. Oper. Res. Soc. 39 (1988) 725–734. [Google Scholar]
  • B. Golany, F. Phillips and J.J. Rousseau, Models for improved efficiencies based on DEA efficiency results. IIE Trans. 25 (1993) 2–10. [CrossRef] [Google Scholar]
  • B. Golany and E. Tamir, Evaluating Efficiency-Effectiveness-Equality Trade-Offs. A Data Envelop. Anal. Appr. Manag. Sci. 41 (1995) 1172–1184. [Google Scholar]
  • A. Hadi-Vencheh, A.A. Foroughi and M. Soleimani-Damaneh, A DEA model for resource allocation. Econ. Model. 25 (2008) 983–993. [Google Scholar]
  • A. Hatami-Marbini and M. Toloo, Data Envelopment Analysis Models with Ratio Data: A revisit. Comput. Ind. Eng. 133 (2019) 331–338. [CrossRef] [Google Scholar]
  • G.R. Jahanshahloo and M. Khodabakhshi, Using input-output orientation model for determining most productive scale size in DEA. Appl. Math. Comput. 146 (2003) 849–855. [MathSciNet] [Google Scholar]
  • G.R. Jahanshahloo, F. Hosseinzadeh Lotfi, N. Shoja and M. Sanei, An alternative approach for equitable allocation of shared costs by using DEA. Appl. Math. Comput. 153 (2004) 267–274. [MathSciNet] [Google Scholar]
  • P. Korhonen and M. Syrjanen, Resource allocation based on efficiency analysis. Manag. Sci. 50 (2004) 1134–1144. [CrossRef] [Google Scholar]
  • S. Lozano and G. Villa, Centralized Resource Allocation Using Data Envelopment Analysis. J. Product. Anal. 22 (2004) 143–161. [CrossRef] [Google Scholar]
  • S. Lozano and G. Villa, Centralized DEA models with the possibility of downsizing. J. Oper. Res. Soc. 56 (2005) 357–364. [Google Scholar]
  • S. Lozano, G. Villa and G. Brännlund, Centralized reallocation of emission permits using DEA. Eur. J. Oper. Res. 193 (2009) 752–760. [CrossRef] [Google Scholar]
  • M. Salahi, M. Toloo and Z. Hesabirad, Robust Russell and enhanced Russell measures in DEA. J. Oper. Res. Soc. 70 (2019) 1275–1283. [CrossRef] [Google Scholar]
  • M. Salahi, M. Toloo and N. Torabi, A new robust optimization approach to common weights formulation in DEA. J. Oper. Res. Soc. 72 (2020) 1390–1402. [Google Scholar]
  • X. Tao, B. Xiong and Q. An, DEAbased centralized resource allocation withflowork flow. Int. Trans. Oper. Res. 28 (2020) 926–958. [Google Scholar]
  • M. Toloo, The role of non-Archimedean epsilon in finding the most efficient unit: With an application of professional tennis players. Appl. Math. Model. 38 (2014) 5334–5346. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Toloo, E.K. Mensah and M. Salahi, Robust optimization and its duality in data envelopment analysis. Omega 108 (2021) 102583. [Google Scholar]
  • K. Tone, A strange case of the cost and allocative efficiencies in DEA. J. Oper. Res. Soc. 53 (2002) 1225–1231. [Google Scholar]
  • J. Wu, Q. Zhu, Q. An, J. Chu and X. Ji, Resource allocation based on context-dependent data envelopment analysis and a multi-objective linear programming approach. Comput. Ind. Eng. 101 (2016) 81–90. [CrossRef] [Google Scholar]
  • F. Zhang, M. Wang, X. Bao and W. Liu, Centralized Resource Allocation and Distributed Power Control for NOMA-Integrated NR V2X. IEEE Inter. Things J. (2021) DOI: 10.1109/JIOT.2021.3075250. [Google Scholar]
  • M. Zheng, L.L. Wang, J. Cui, A DEA approach in the view of efficiencies. Institute of applied mathematics, academy of mathematics, and system science. Chinese Academy of sciences, Beijing, China (2018) 100190. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.