Open Access
Issue |
RAIRO-Oper. Res.
Volume 56, Number 4, July-August 2022
|
|
---|---|---|
Page(s) | 2919 - 2927 | |
DOI | https://doi.org/10.1051/ro/2022143 | |
Published online | 30 August 2022 |
- C. Bazgan, A. Benhamdine, H. Li and M. Woźniak, Partitioning vertices of 1-tough graph into paths. Theor. Comput. Sci. 263 (2001) 255–261. [CrossRef] [Google Scholar]
- Y. Egawa and M. Furuya, The existence of a path-factor without small odd paths. Electron. J. Comb. 25 (2018) #P1.40. [CrossRef] [Google Scholar]
- W. Gao and W. Wang, Tight binding number bound for P≥3-factor uniform graphs. Inf. Process. Lett. 172 (2021) 106162. [CrossRef] [Google Scholar]
- W. Gao, W. Wang and Y. Chen, Tight bounds for the existence of path factors in network vulnerability parameter settings. Int. J. Intell. Syst. 36 (2021) 1133–1158. [Google Scholar]
- H. Hua, Toughness and isolated toughness conditions for P≥3-factor uniform graphs. J. Appl. Math. Comput. 66 (2021) 809–821. [CrossRef] [MathSciNet] [Google Scholar]
- M. Johnson, D. Paulusma and C. Wood, Path factors and parallel knock-out schemes of almost claw-free graphs. Discrete Math. 310 (2010) 1413–1423. [Google Scholar]
- A. Kaneko, A necessary and sufficient condition for the existence of a path factor every component of which is a path of length at least two. J. Comb. Theory Ser. B 88 (2003) 195–218. [Google Scholar]
- M. Kano, G.Y. Katona and Z. Király, Packing paths of length at least two. Discrete Math. 283 (2004) 129–135. [Google Scholar]
- M. Kano, C. Lee and K. Suzuki, Path and cycle factors of cubic bipartite graphs. Discuss. Math. Graph Theory 28 (2008) 551–556. [Google Scholar]
- M. Kano, H. Lu and Q. Yu, Component factors with large components in graphs. Appl. Math. Lett. 23 (2010) 385–389. [Google Scholar]
- S. Wang and W. Zhang, Research on fractional critical covered graphs. Probl. Inf. Transm. 56 (2020) 270–277. [CrossRef] [MathSciNet] [Google Scholar]
- S. Wang and W. Zhang, On k-orthogonal factorizations in networks. RAIRO-Oper. Res. 55 (2021) 969–977. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- S. Wang and W. Zhang, Isolated toughness for path factors in networks. RAIRO-Oper. Res. 56 (2022) 2613–2619. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- D. Woodall, The binding number of a graph and its Anderson number. J. Comb. Theory Ser. B 15 (1973) 225–255. [CrossRef] [Google Scholar]
- H. Zhang and S. Zhou, Characterizations for P≥2-factor and P≥2-factor covered graphs. Discrete Math. 309 (2009) 2067–2076. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou, A neighborhood union condition for fractional (a, b, k)-critical covered graphs. Discrete Appl. Math. (2021). DOI: 10.1016/j.dam.2021.05.022. [Google Scholar]
- S. Zhou, A result on fractional (a, b, k)-critical covered graphs. Acta Math. Appl. Sin. Engl. Ser. 37 (2021) 657–664. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou, Path factors and neighborhoods of independent sets in graphs. Acta Math. Appl. Sin. Engl. Ser. (2022). DOI: 10.1007/s10255-022-1096-2. [Google Scholar]
- S. Zhou, Remarks on restricted fractional (g, f)-factors in graphs. Discrete Appl. Math. (2022). DOI: 10.1016/j.dam.2022.07.020. [Google Scholar]
- S. Zhou and H. Liu, Discussions on orthogonal factorizations in digraphs. Acta Math. Appl. Sin. Engl. Ser. 38 (2022) 417–425. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou and Z. Sun, Binding number conditions for P≥2-factor and P≥3-factor uniform graphs, Discrete Math. 343 (2020) 111715. [Google Scholar]
- S. Zhou, Z. Sun and H. Liu, Isolated toughness and path-factor uniform graphs. RAIRO-Oper. Res. 55 (2021) 1279–1290. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- S. Zhou, J. Wu and Y. Xu, Toughness, isolated toughness and path factors in graphs. Bull. Aust. Math. Soc. (2021). DOI: 10.1017/S0004972721000952. [Google Scholar]
- S. Zhou, Q. Bian and Q. Pan, Path factors in subgraphs. Discrete Appl. Math. 319 (2022) 183–191. [CrossRef] [Google Scholar]
- S. Zhou, H. Liu and Y. Xu, A note on fractional ID-[a, b]-factor-critical covered graphs. Discrete Appl. Math. 319 (2022) 511–516. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou, Z. Sun and Q. Bian, Isolated toughness and path-factor uniform graphs (II). Indian J. Pure Appl. Math. (2022). DOI: 10.1007/s13226-022-00286-x. [Google Scholar]
- S. Zhou, J. Wu and Q. Bian, On path-factor critical deleted (or covered) graphs. Aequationes Math. 96 (2022) 795–802. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou, J. Wu and H. Liu, Independence number and connectivity for fractional (a, b, k)-critical covered graphs. RAIRO-Oper. Res. 56 (2022) 2535–2542. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.