Open Access
RAIRO-Oper. Res.
Volume 56, Number 4, July-August 2022
Page(s) 3017 - 3045
Published online 30 August 2022
  • E. Adida and N. Ratisoontorn, Consignment contracts with retail competition. Eur. J. Opera. Res. 215 (2011) 136–148. [CrossRef] [Google Scholar]
  • A. AlArjani, U.M. Modibbo, I. Ali and B. Sarkar, A new framework for the sustainable development goals of Saudi Arabia. J. King Saud. Univ. Sci. 33 (2021) 101477. [CrossRef] [Google Scholar]
  • R. As’ad, M. Hariga and O. Alkhatib, Two stage closed loop supply chain models under consignment stock agreement and different procurement strategies. App. Math. Model. 65 (2019) 164–186. [CrossRef] [Google Scholar]
  • S. Bhuniya, B. Sarkar and S. Pareek, Multi-product production system with the reduced failure rate and the optimum energy consumption under variable demand. Mathematics 7 (2019) 465. [Google Scholar]
  • M. Braglia and L. Zavanella, Modelling an industrial strategy for inventory management in supply chains: the “Consignment Stock” case. Int. J. Prod. Res. 41 (2003) 3793–3808. [CrossRef] [Google Scholar]
  • L.E. Cárdenas-Barrón, The economic production quantity (EPQ) with shortage derived algebraically. Int. J. Prod. Econ. 70 (2001) 289–292. [Google Scholar]
  • C.J. Corbet and G.A. DeCroix, Shared-savings contracts for indirect material in supply chain: channel profits and environmentalimpacts. Manag. Sci. 47 (2001) 881–893. [CrossRef] [Google Scholar]
  • G.C. Chao, S.M. Iravani and R.C. Savaskan, Quality improvement incontives and product recall cost sharing contracts. Manag. Sci. 55 (2009) 1122–1138. [CrossRef] [Google Scholar]
  • X. Chen and X. Wang, Effects of carbon emission reduction policies on transportation mode selections with stochastic demand. Transp. Res. Part E Logistics Transp. Rev. 90 (2016) 196–205. [CrossRef] [Google Scholar]
  • S.B. Choi, S.J. Kim, B.K. Dey and B. Sarkar, Intelligent servicing strategy for an online-to-offline (O2O) supply chain under demand variability and controllable lead time. RAIRO-Oper. Res. 56 (2022) 1623–1653. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • K.J. Chung, S.K. Goyal and Y.F. Huang, The optimal inventory policies under permissible delay in payments depending on the ordering quantity. Int. J. Prod. Econ. 95 (2005) 203–213. [Google Scholar]
  • G. Gallego and I. Moon, The distribution free newsboy problem: review and extensions. J. Oper. Res. Soc. 44 (1993) 825–834. [Google Scholar]
  • A. Garai and B. Sarkar, Economically independent reverse logistics of customer-centric closed-loop supply chain for herbal medicines and biofuel. J. Clean. Prod. 334 (2022) 129977. [CrossRef] [Google Scholar]
  • Y. Gerchak and E. Khmelnitsky, A consignment system where suppliers cannot verify retailer’s sales reports. Int. J. Prod. Eco. 83 (2003) 37–43. [CrossRef] [Google Scholar]
  • R. Guchhait and B. Sarkar, Economic and environmental assessment of an unreliable supply chain management. RAIRO-Oper. Res. 55 (2021) 3153–3170. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • S. Gupta, A. Haq, I. Ali and B. Sarkar, Significance of multi-objective optimization in logistics problem for multi-product supply chain network under the intuitionistic fuzzy environment. Comp. Intel. Syst. 7 (2021) 2119–2139. [CrossRef] [Google Scholar]
  • M.S. Habib, O. Asghar, A. Hussain, M. Imran, M.P. Mughal and B. Sarkar, A robust possibilistic programming approach toward animal fat-based biodiesel supply chain network design under uncertain environment. J. Clean. Prod. 278 (2021) 122403. [CrossRef] [Google Scholar]
  • M.S. Habib, M. Omair, M.B. Ramzan, T.N. Chaudhary, M. Farooq and B. Sarkar, A robust possibilistic flexible programming approach toward a resilient and cost-efficient biodiesel supply chain network. J. Clean. Prod. 366 (2022) 132752. [CrossRef] [Google Scholar]
  • M. Hariga, R. Asad and A. Shamayleh, Integrated economic and environmental models for a multi-stage cold supply chain under carbon tax regulation. J. Clean. Prod. 166 (2017) 1357–1371. [CrossRef] [Google Scholar]
  • M.Y. Jaber, S. Zanoni and L.E. Zavanella, Economic order quantity models for imperfect items with buy and repair options. Int. J. Prod. Eco. 155 (2014) 126–131. [CrossRef] [Google Scholar]
  • C.W. Kang, M. Ullah, B. Sarkar, I. Hussain and R. Akhtar, Impact random defective rate on lot size focusing work-in-process inventory in manufacturing system. Int. J. Prod. Res. 55 (2017) 1748–1766. [CrossRef] [Google Scholar]
  • M. Khouja, J. Pan, B.T. Ratchford and J. Zhou, Analysis of free gift card program effectiveness. J. Retail. 87 (2011) 444–461. [CrossRef] [Google Scholar]
  • P. Kotler and G. Zaltman, Social marketing: an approach to planned social change. J. Market. 35 (1971) 3–12. [CrossRef] [PubMed] [Google Scholar]
  • S. Kumar, K.K. Meenu and B. Sarkar, Manufacturing/remanufacturing based supply chain management under advertisements and carbon emission process. RAIRO-Oper. Res. 56 (2022) 831–851. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • A.S.H. Kugele, W. Ahmed and B. Sarkar, Geometric programming solution of second degree difficulty for carbon ejection controlled reliable smart production system. RAIRO-Oper. Res. 56 (2022) 1013–1029. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • S. Ladany and A. Sternlieb, The interaction of economic ordering quantities and marketing policies. AIIE Trans. 6 (1974) 35–40. [CrossRef] [Google Scholar]
  • X.J. Lee, H.C. Ong, W. Gao, Y.S. Ok, W.H. Chen, B.H.H. Goh and C.T. Chong, Solid biofuel production from spent coffee ground wastes: Process optimisation, characterisation and kinetic studies. Fuel 292 (2021) 120309. [CrossRef] [Google Scholar]
  • J. Mahajan, S. Radas and A.J. Vakharia, Channel strategies and stocking policies in uncapacitated and capacitated supply chains. Decis. Sci. 33 (2002) 191–222. [CrossRef] [Google Scholar]
  • A.S. Mahapatra, H.N. Soni, M.S. Mahapatra, B. Sarkar and S. Majumder, A continuous review production-inventory system with a variable preparation time in a fuzzy random environment. Mathematics 9 (2021) 747. [CrossRef] [Google Scholar]
  • S. Minner and G. Lindner, Lot sizing decisions in product recovery management. In: Reverse Logistics. Springer (2004) 157–179. [CrossRef] [Google Scholar]
  • I. Moon and S. Choi, The distribution free newsboy problem with balking. J. Oper. Res. Soc. 46 (1995) 537–542. [CrossRef] [Google Scholar]
  • I. Moon and G. Gallego, Distribution free procedures for some inventory models. J. Oper. Res. Soc. 45 (1994) 651–658. [CrossRef] [Google Scholar]
  • I. Moon, W.Y. Yun and B. Sarkar, Effects of variable setup cost, reliability, and production costs under controlled carbon emissions in a reliable production system. Eur. J. Ind. Eng. 16 (2022) 371–397. [CrossRef] [Google Scholar]
  • V. Murmu, D. Kumar and B. Sarkar, Production-inventory model for perishable items under COVID-19 pandemic disruptions. In: Making Complex Decisions toward Revamping Supply Chains amid COVID-19 Outbreak, 1st Ed., CRC Press (2022) 19–41. [CrossRef] [Google Scholar]
  • B. Pal, S.S. Sana and K. Chaudhuri, Two-echelon manufacturer-retailer supply chain strategies with price, quantity and promotional effort sensitive demand. Int. Trans. Oper. Res. 22 (2015) 1071–1095. [CrossRef] [MathSciNet] [Google Scholar]
  • C. Park, Partial backordering inventory model under purchase dependence. Transp. Indust. Eng. Manag. Syst. 14 (2015) 275–288. [Google Scholar]
  • A.M. Pinto, H. Rodrguez, A. Arce and A. Soto, Carbon dioxide absorption in the ionic liquid 1-ethylpyridinium ethylsulfate and in its mixtures with another ionic liquid. Int. J. Greenhouse Gas Control. 18 (2013) 296–304. [CrossRef] [Google Scholar]
  • E.L. Porteus, Optimal lot sizing, process quality improvement and setup cost reduction. Ope. Res. 34 (1986) 137–144. [CrossRef] [Google Scholar]
  • M.J. Rosenblatt and H.L. Lee, Economic production cycles with imperfect production processes. IIE Trans. 18 (1986) 48–55. [Google Scholar]
  • B. Sarkar and S. Bhuniya, A sustainable flexible manufacturing–remanufacturing model with improved service and green investment under variable demand, Exp. Syst. App. 202 (2022) 117154. [CrossRef] [Google Scholar]
  • B. Sarkar, M. Ullah and N. Kim, Environmental and economic assessment of closed-loop supply chain with remanufacturing and returnable transport items. Comput. Indust. Eng. 111 (2017) 148–163. [CrossRef] [Google Scholar]
  • B. Sarkar, B. Mridha, S. Pareek, M. Sarkar and L. Thangavelu, A flexible biofuel and bioenergy production system with transportation disruption under a sustainable supply chain network. J. Clean. Prod. 317 (2021) 128079. [CrossRef] [Google Scholar]
  • B. Sarkar, A. Debnath, A.S.F. Chiu and W. Ahamed, Circular economy-driven two-stage supply chain management for nullifying waste. J. Clean. Prod. 339 (2022) 130513. [CrossRef] [Google Scholar]
  • A. Sarkar, R. Guchhait and B. Sarkar, Application of the artificial neural network with multithreading within an inventory model under uncertainty and inflation. Int. J. Fuzzy Syst. (2022). DOI: 10.1007/s40815-022-01276-1. [Google Scholar]
  • B. Sarkar, J. Joo, Y. Kim, H. Park and M. Sarkar, Controlling defective items in a complex multi-phase manufacturing system. RAIRO-Oper. Res. 56 (2022) 871–889. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • B. Sarkar, B. Mridha and S. Pareek, A sustainable smart multi-type biofuel manufacturing with the optimum energy utilization under flexible production. J. Clean. Prod. 332 (2022) 129869. [CrossRef] [Google Scholar]
  • B. Sarkar, M. Ullah and M. Sarkar, Environmental and economic sustainability through innovative green products by remanufacturing. J. Clean. Prod. 332 (2022) 129813. [CrossRef] [Google Scholar]
  • S. Sen and C.B. Bhattacharya, Does doing good always lead to doing better? Consumer reactions to corporate social responsibility. J. Market. Res. 38 (2001) 225–243. [CrossRef] [Google Scholar]
  • A. Sepehri, U. Mishra, M.L. Tseng and B. Sarkar, Joint pricing and inventory model for deteriorating items with maximum lifetime and controllable carbon emissions under permissible delay in payments. Mathematics 9 (2021) 470. [CrossRef] [Google Scholar]
  • J. Shi, G. Zhanga and J. Shab, Optimal production planning for a multi-product closed loop system with uncertain demand and return. Comput. Operat. Res. 38 (2011) 641–656. [CrossRef] [MathSciNet] [Google Scholar]
  • S.R. Singh, D. Yadav, B. Sarkar and M. Sarkar, Impact of energy and carbon emission of a supply chain management with two-level trade-credit policy. Energies 14 (2021) 1569. [CrossRef] [Google Scholar]
  • A.A. Taleizadeh, D.W. Pentico, M.S. Jabalameli and M. Aryanezhad, An EOQ model with partial delayed payment and partial backordering. Omega 41 (2013) 354–368. [Google Scholar]
  • A.A. Taleizadeh, M.S. Moshtagh and I. Moon, Optimal decisions of price, quality, effort level and return policy in a three-level closed-loop supply chain based on different game theory approaches. Eur. J. Ind. Eng. 11 (2017) 486. [CrossRef] [Google Scholar]
  • A.A. Taleizadeh, N.A. Basban and S.T.A. Niaki, A closed-loop supply chain considering carbon reduction, quality improvement effort, and return policy under two remanufacturing scenarios. J. Clean. Prod. 232 (2019) 1230–1250. [CrossRef] [Google Scholar]
  • L. Xu, Y. Li, K. Govindan and X. Yue, Return policy and supply chain coordination with network-externality effect. Int. J. Prod. Res. 56 (2018) 3714–3732. [CrossRef] [Google Scholar]
  • D. Yadav, R. Singh, A. Kumar and B. Sarkar, Reduction of pollution through sustainable and flexible production by controlling by-products. J. Env Inform. (2022). op=view path%5B%5D=202200476. [Google Scholar]
  • H. Yi and B.R. Sarker, An operational policy for an integrated inventory system under consigment stock policy with controllable lead time and buyers space limitation. Comput. Oper. Res. 40 (2013) 2632–2645. [CrossRef] [Google Scholar]
  • H.F. Yu, W.K. Hsu and W.J. Chang, EOQ model where a portion of the defectives can be used as perfect quality. Int. J. Syst. Sci. 43 (2012) 1689–1698. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.