RAIRO-Oper. Res.
Volume 56, Number 4, July-August 2022
Recent developments of operations research and data sciences
Page(s) 3047 - 3069
Published online 30 August 2022
  • M. Alahyane, A. Hakim, A. Laghrib and S. Raghay, A fast approach of nonparametric elastic image registration problem. Math. Methods Appl. Sci. 42 (2019) 7059–7075. [CrossRef] [MathSciNet] [Google Scholar]
  • J.P. Ardila, V.A. Tolpekin, W. Bijker and A. Stein, Markov-random-field-based super-resolution mapping for identification of urban trees in vhr images. ISPRS J. Photogramm. Remote Sens. 66 (2011) 762–775. [CrossRef] [Google Scholar]
  • G. Aubert and P. Kornprobst, Mathematical problems in image processing: partial differential equations and the calculus of variations, Vol. 147. Springer Science & Business Media (2006). [CrossRef] [Google Scholar]
  • J.P. Aubin, Un théorème de compacité. Acad. Sci. Paris 256 (1963) 5042–5044. [MathSciNet] [Google Scholar]
  • R.M. Bahy, G.I. Salama and T.A. Mahmoud, Adaptive regularization-based super resolution reconstruction technique for multi-focus low-resolution images. Signal Process. 103 (2014) 155–167. [CrossRef] [Google Scholar]
  • S. Baker and T. Kanade, Super-resolution optical flow. Carnegie Mellon University, The Robotics Institute (1999). [Google Scholar]
  • S. Baker and T. Kanade, Limits on super-resolution and how to break them. IEEE Trans. Pattern Anal. Mach. Intell. 24 (2002) 1167–1183. [CrossRef] [Google Scholar]
  • M. Bergounioux and L. Piffet, A second-order model for image denoising. Set-Valued Var. Anal. 18 (2014) 277–306. [Google Scholar]
  • H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer (2011). [Google Scholar]
  • A. Buades, B. Coll and J.-M. Morel, The staircasing effect in neighborhood filters and its solution. IEEE Trans. Image Process. 15 (2006) 1499–1505. [CrossRef] [PubMed] [Google Scholar]
  • A. Chambolle and P.-L. Lions, Image recovery via total variation minimization and related problems. Numer. Math. 76 (1997) 167–188. [Google Scholar]
  • F. Demengel and G. Demengel, Espaces fonctionnels. Utilisation dans la résolution des équations aux dérivées partielles. CNRS Editions (2007). [Google Scholar]
  • I. El Mourabit, M. El Rhabi, A. Hakim, A. Laghrib and E. Moreau, A new denoising model for multi-frame super-resolution image reconstruction. Signal Process. 132 (2017) 51–65. [CrossRef] [Google Scholar]
  • I. El Mourabit, A. Hakim and A. Laghrib, An anisotropic pde for multi-frame super-resolution image reconstruction. In International Conference on Numerical Analysis and Optimization Days. Springer (2021) 29–41. [Google Scholar]
  • S. Farsiu, M.D. Robinson, M. Elad and P. Milanfar, Fast and robust multiframe super resolution. IEEE Trans. Image Process. 13 (2004) 1327–1344. [CrossRef] [PubMed] [Google Scholar]
  • R. Fransens, C. Strecha and L. Van Gool, Optical flow based super-resolution: A probabilistic approach. Comput. Vis. Image Underst. 106 (2007) 106–115. [CrossRef] [Google Scholar]
  • D. Ghosh, N. Kaabouch and W.-C. Hu, A robust iterative super-resolution mosaicking algorithm using an adaptive and directional huber-markov regularization. J. Vis. Commun. Image Represent. 40 (2016) 98–110. [CrossRef] [Google Scholar]
  • H. Greenspan, G. Oz, N. Kiryati and S.L.B.G. Peled, Mri inter-slice reconstruction using super-resolution. Magn. Reson. Imaging 20 (2002) 437–446. [CrossRef] [Google Scholar]
  • Y. Han, C. Xu, G. Baciu and X. Feng, Multiplicative noise removal combining a total variation regularizer and a nonconvex regularizer. Int. J. Comput. Math. 91 (2014) 2243–2259. [CrossRef] [MathSciNet] [Google Scholar]
  • Y. He, K.-H. Yap, L. Chen and L.-P. Chau, A nonlinear least square technique for simultaneous image registration and super-resolution. IEEE Trans. Image Process. 16 (2007) 2830–2841. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Q. Huynh-Thu and M. Ghanbari, Scope of validity of psnr in image/video quality assessment. Electron. Lett. 44 (2008) 800–801. [CrossRef] [Google Scholar]
  • M. Jung, A. Marquina and L.A. Vese, Variational multiframe restoration of images degraded by noisy (stochastic) blur kernels. J. Comput. Appl. Math. 240 (2013) 123–134. [CrossRef] [MathSciNet] [Google Scholar]
  • N. Kumar, R. Verma and A. Sethi, Convolutional neural networks for wavelet domain super resolution. Pattern Recognit. Lett. 90 (2017) 65–71. [CrossRef] [Google Scholar]
  • A. Laghrib, A. Hakim and S. Raghay, A combined total variation and bilateral filter approach for image robust super resolution. EURASIP J. Image Video Process. 2015 (2015) 1–10. [CrossRef] [Google Scholar]
  • A. Laghrib, A. Ghazdali, A. Hakim and S. Raghay, A multi-frame super-resolution using diffusion registration and a nonlocal variational image restoration. Comput. Math. Appl. 72 (2016) 2535–2548. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Laghrib, A. Ben-Loghfyry, A. Hadri and A. Hakim, A nonconvex fractional order variational model for multi-frame image super-resolution. Signal Process. Image Commun. 67 (2018) 1–11. [CrossRef] [Google Scholar]
  • A. Laghrib, M. Ezzaki, M. El Rhabi, A. Hakim, P. Monasse and S. Raghay, Simultaneous deconvolution and denoising using a second order variational approach applied to image super resolution. Comput. Vis. Image Underst. 168 (2018) 50–63. [CrossRef] [Google Scholar]
  • A. Laghrib, A. Hadri and A. Hakim, An edge preserving high-order pde for multiframe image super-resolution. J. Franklin Inst. 356 (2019) 5834–5857. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Laghrib, A. Hadri, A. Hakim and S. Raghay, A new multiframe super-resolution based on nonlinear registration and a spatially weighted regularization. Inf. Sci. 493 (2019) 34–56. [CrossRef] [Google Scholar]
  • A. Laghrib, A. Chakib, A. Hadri and A. Hakim, A nonlinear fourth-order pde for multi-frame image super-resolution enhancement. Discrete Contin. Dyn. Syst.-B 25 (2020) 415. [Google Scholar]
  • R. Lai, X.-C. Tai and T.F. Chan, A ridge and corner preserving model for surface restoration. SIAM J. Sci. Comput. 35 (2013) A675–A695. [CrossRef] [Google Scholar]
  • L.F. Lang, S. Neumayer, O. Öktem and C.-B. Schönlieb, Template-based image reconstruction from sparse tomographic data. Appl. Math. Optim. (2019) 1–29. [Google Scholar]
  • S. Lefkimmiatis, A. Bourquard and M. Unser, Hessian-based norm regularization for image restoration with biomedical applications. IEEE Trans. Image Process. 21 (2012) 983–995. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • M. Lysaker and X.-C. Tai, Iterative image restoration combining total variation minimization and a second-order functional. Int. J. Comput. Vis. 66 (2006) 5–18. [CrossRef] [Google Scholar]
  • B.J. Maiseli, N. Ally and H. Gao, A noise-suppressing and edge-preserving multiframe super-resolution image reconstruction method. Signal Process. Image Commun. 34 (2015) 1–13. [CrossRef] [Google Scholar]
  • J. Modersitzki, Numerical Methods for Image Registration. Oxford University Press, USA (2007). [Google Scholar]
  • K. Papafitsoros and C.-B. Schönlieb, A combined first and second order variational approach for image reconstruction. J. Math. Imaging Vis. 48 (2014) 308–338. [CrossRef] [Google Scholar]
  • M.K. Park and M.G. Kang, Regularized high-resolution reconstruction considering inaccurate motion information. Opt. Eng. 46 (2007) 117004. [CrossRef] [Google Scholar]
  • M. Protter, M. Elad, H. Takeda and P. Milanfar, Generalizing the nonlocal-means to super-resolution reconstruction. IEEE Trans. Image Process. 18 (2008) 36–51. [Google Scholar]
  • P. Rasti, H. Demirel and G. Anbarjafari, Improved iterative back projection for video super-resolution. In 2014 22nd Signal Processing and Communications Applications Conference (SIU). IEEE (2014) 552–555. [Google Scholar]
  • M.D. Robinson, S.J. Chiu, C.A. Toth, J.A. Izatt, J.Y. Lo and S. Farsiu, New applications of super-resolution in medical imaging. In Super-Resolution Imaging. CRC Press (2017) 401–430. [Google Scholar]
  • D.A. Sorrentino and A. Antoniou, Storage-efficient quasi-newton algorithms for image super-resolution. In 2009 16th International Conference on Digital Signal Processing. IEEE (2009) 1–6. [Google Scholar]
  • H. Su, N. Jiang, Y. Wu and J. Zhou, Single image super-resolution based on space structure learning. Pattern Recognit. Lett. 34 (2013) 2094–2101. [CrossRef] [Google Scholar]
  • T. Valkonen, K. Bredies and F. Knoll, Total generalized variation in diffusion tensor imaging. SIAM J. Imaging Sci. 6 (2013) 487–525. [CrossRef] [MathSciNet] [Google Scholar]
  • Z. Wang, A.C. Bovik, H.R. Sheikh and E.P. Simoncelli, Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13 (2004) 600–612. [CrossRef] [Google Scholar]
  • F.W. Wheeler, R.T. Hoctor and E.B. Barrett, Super-resolution image synthesis using projections onto convex sets in the frequency domain. In Vol. 5674 of Computational Imaging III. International Society for Optics and Photonics (2005) 479–490. [Google Scholar]
  • S. Yang, M. Wang, Y. Sun, F. Sun and L. Jiao, Compressive sampling based single-image super-resolution reconstruction by dual-sparsity and non-local similarity regularizer. Pattern Recognit. Lett. 33 (2012) 1049–1059. [CrossRef] [Google Scholar]
  • X. Yang and J. Yang, Efficient diffeomorphic metric image registration via stationary velocity. J. Comput. Sci. 30 (2019) 90–97. [CrossRef] [Google Scholar]
  • Q. Yuan, L. Zhang and H. Shen, Multiframe super-resolution employing a spatially weighted total variation model. IEEE Trans. Circuits Syst. Video Technol. 22 (2012) 379–392. [Google Scholar]
  • L. Yue, H. Shen, J. Li, Q. Yuan, H. Zhang and L. Zhang, Image super-resolution: The techniques, applications, and future. Signal Process. 128 (2016) 389–408. [CrossRef] [Google Scholar]
  • W. Zhao, H. Sawhney, M. Hansen and S. Samarasekera, Super-fusion: a super-resolution method based on fusionIn Vol. 2 of Object recognition supported by user interaction for service robots. IEEE (2002) 269–272. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.