Issue |
RAIRO-Oper. Res.
Volume 56, Number 4, July-August 2022
Recent developments of operations research and data sciences
|
|
---|---|---|
Page(s) | 2999 - 3015 | |
DOI | https://doi.org/10.1051/ro/2022136 | |
Published online | 30 August 2022 |
- M.M. Ali, N.N. Mikhail and M.S. Haq, A class of bivariate distributions including the bivariate logistic. J. Multivariate Anal. 8 (1978) 405–412. [CrossRef] [MathSciNet] [Google Scholar]
- A.J. Bell and T.J. Sejnowski, An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 7 (1995) 1129–1159. [CrossRef] [PubMed] [Google Scholar]
- A. Belouchrani, K. Abed Meraim, J.F. Cardoso and E. Moulines, A blind source separation technique using second-order statistics. IEEE Trans. Signal Process. 45 (1997) 434–444. [CrossRef] [Google Scholar]
- R. Beran, Minimum hellinger distance estimates for parametric models. Ann. Stat. 5 (1977) 445–463. [Google Scholar]
- J.F. Cardoso, Blind signal separation: statistical principles. Proc. IEEE 86 (1998) 2009–2025. [CrossRef] [Google Scholar]
- J.F. Cardoso and A. Souloumiac, Blind signal beamforming for non gaussian signals. Proc. IEE 140 (1993) 362–370. [Google Scholar]
- M. Castella, S. Rhioui, E. Moreau and J.C. Pesquet, Quadratic higher order criteria for iterative blind separation of a mimo convolutive mixture of sources. IEEE Trans. Signal Process. 55 (2007) 218–232. [CrossRef] [MathSciNet] [Google Scholar]
- D.G. Clayton, A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika 65 (1978) 141–151. [CrossRef] [Google Scholar]
- P. Comon, Independent component analysis, a new concept? Signal Process. 36 (1994) 287–314. [CrossRef] [Google Scholar]
- P. Comon and C. Jutten, Handbook of Blind Source Separation: Independent Component Analysis and Applications. Academic Press, Oxford (2010). [Google Scholar]
- I. Csiszár, Eine informationstheoretische ungleichung und ihre anwendung auf beweis der ergodizitaet von markoffschen ketten. Magyer. Tud. Akad. Mat. Kutat. In. Kol. 8 (1964) 85–108. [Google Scholar]
- I. Csiszár, Information-type measures of difference of probability distributions and indirect observation. Stud. Sci. Math. Hung. 2 (1967) 229–318. [Google Scholar]
- M. El Rhabi, G. Gelle, H. Fenniri and G. Delaunay, A penalized mutual information criterion for blind separation of convolutive mixtures. Signal Process. 84 (2004) 1979–1984. [CrossRef] [Google Scholar]
- M. El Rhabi, H. Fenniri, A. Keziou and E. Moreau, A robust algorithm for convolutive blind source separation in presence of noise. Signal Process. 93 (2013) 818–827. [CrossRef] [Google Scholar]
- M.J. Frank, On the simultaneous associativity of F(x, y) and x + y − F(x, y). Aequ. Math. 19 (1979) 194–226. [CrossRef] [Google Scholar]
- C. Genest, K. Ghoudi and L.-P. Rivest, A semiparametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika 82 (1995) 543–552. [Google Scholar]
- A. Ghazdali, A. Hakim, A. Laghrib, N. Mamouni and S. Raghay, A new method for the extraction of fetal ECG from the dependent abdominal signals using blind source separation and adaptive noise cancellation techniques. Theor. Biol. Med. Model. 12 (2015) 25. [CrossRef] [Google Scholar]
- A. Ghazdali, M. El Rhabi, H. Fenniri, A. Hakim and A. Keziou, Blind noisy mixture separation for independent/dependent sources through a regularized criterion on copulas. Signal Process. 131 (2017) 502–513. [CrossRef] [Google Scholar]
- A. Hyvärinen and E. Oja, A fast fixed-point algorithm for independent component analysis. Neural Comput. 9 (1997) 1483–1492. [CrossRef] [Google Scholar]
- R. Jiménz and Y. Shao, On robustness and efficiency of minimum divergence estimators. Test 10 (2001) 241–248. [CrossRef] [MathSciNet] [Google Scholar]
- H. Joe, Multivariate Models and Dependence Concepts. Chapman & Hall London, Boca Raton (2001). [Google Scholar]
- A. Keziou, H. Fenniri, A. Ghazdali and E. Moreau, New blind source separation method of independent/dependent sources. Signal Process. 104 (2014) 319–324. [CrossRef] [Google Scholar]
- B.G. Lindsay, Efficiency versus robustness: the case for minimum Hellinger distance and related methods. Ann. Stat. 22 (1994) 1081–1114. [CrossRef] [Google Scholar]
- E.G. Miller and J.W. Fisher III, Independent components analysis by direct entropy minimization. California Univ Berkeley Dept of Electrical Engineering and Computer Sciences (2003). [CrossRef] [Google Scholar]
- R.B. Nelsen, An Introduction to Copulas. Springer, New Haven (2007). [Google Scholar]
- M. Omelka, I. Gijbels and N. Veraverbeke, Improved kernel estimation of copulas: weak convergence and goodness-of-fit testing. Ann. Stat. 37 (2009) 3023–3058. [CrossRef] [Google Scholar]
- A. Ourdou, A. Ghazdali, A. Laghrib and M. Abdelmoutalib, Blind separation of instantaneous mixtures of independent/dependent sources. Circuits Syst. Signal Process. 40 (2021) 1–24. [Google Scholar]
- D.T. Pham, Blind separation of instantaneous mixture of sources based on order statistics. IEEE Trans. Signal Process. 2 (2000) 363–375. [CrossRef] [Google Scholar]
- D.T. Pham, Mutual information approach to blind separation of stationary sources. IEEE Trans. Inf. Theory 48 (2002) 1935–1946. [CrossRef] [Google Scholar]
- G. Schwarz, Estimating the dimension of a model. Ann. Stat. 6 (1978) 461–464. [CrossRef] [Google Scholar]
- B.W. Silverman, Density Estimation for Statistics and Data Analysis. CRC Press, New Haven (1986). [Google Scholar]
- M. Sklar, Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 (1959) 229–231. [MathSciNet] [Google Scholar]
- H. Tsukahara, Semiparametric estimation in copula models. Can. J. Stat. 33 (2005) 357–375. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.