Open Access
RAIRO-Oper. Res.
Volume 56, Number 4, July-August 2022
Page(s) 2967 - 2997
Published online 30 August 2022
  • A. Aghighi, A. Goli, B. Malmir and E.B. Tirkolaee, The stochastic location-routing-inventory problem of perishable products with reneging and balking. J. Ambient Intell. Humaniz. Comput. (2021) 1–20. [Google Scholar]
  • M.A. Akdoğan, Z.P. Bayındır and C. Iyigun, Locating emergency vehicles with an approximate queuing model and a meta-heuristic solution approach. Transp. Res. Part C: Emerg. Technol. 90 (2018) 134–155. [CrossRef] [Google Scholar]
  • H. Andersson, T.A. Granberg, M. Christiansen, E.S. Aartun and H. Leknes, Using optimization to provide decision support for strategic emergency medical service planning – three case studies. Int. J. Med. Inf. 133 (2020) 103975. [CrossRef] [Google Scholar]
  • R. Aringhieri, M.E. Bruni, S. Khodaparasti and J.T. van Essen, Emergency medical services and beyond: addressing new challenges through a wide literature review. Comput. Oper. Res. 78 (2017) 349–368. [CrossRef] [MathSciNet] [Google Scholar]
  • R. Batta, J.M. Dolan and N.N. Krishnamurthy, The maximal expected covering location problem: revisited. Transp. Sci. 23 (1989) 277–287. [CrossRef] [Google Scholar]
  • V. Bélanger, A. Ruiz and P. Soriano, Recent optimization models and trends in location, relocation, and dispatching of emergency medical vehicles. Eur. J. Oper. Res. 272 (2019) 1–23. [CrossRef] [Google Scholar]
  • F. Borrás and J.T. Pastor, The ex-post evaluation of the minimum local reliability level: an enhanced probabilistic location set covering model. Ann. Oper. Res. 111 (2002) 51–74. [CrossRef] [MathSciNet] [Google Scholar]
  • J.J. Boutilier and T.C. Chan, Ambulance emergency response optimization in developing countries. Oper. Res. 68 (2020) 1315–1334. [CrossRef] [MathSciNet] [Google Scholar]
  • L. Brotcorne, G. Laporte and F. Semet, Ambulance location and relocation models. Eur. J. Oper. Res. 147 (2003) 451–463. [CrossRef] [Google Scholar]
  • K. Cantwell, P. Dietze, A.E. Morgans and K. Smith, Ambulance demand: random events or predicable patterns? Emerg. Med. J. 30 (2013) 883–887. [CrossRef] [PubMed] [Google Scholar]
  • K. Cantwell, A. Morgans, K. Smith, M. Livingston, T. Spelman and P. Dietze, Time of day and day of week trends in EMS demand. Prehosp. Emerg. Care 19 (2015) 425–431. [CrossRef] [PubMed] [Google Scholar]
  • S. Chanta, M.E. Mayorga, M.E. Kurz and L.A. McLay, The minimum p-envy location problem: a new model for equitable distribution of emergency resources. IIE Trans. Healthc. Syst. Eng. 1 (2011) 101–115. [CrossRef] [Google Scholar]
  • S. Chanta, M.E. Mayorga and L.A. McLay, Improving emergency service in rural areas: a bi-objective covering location model for EMS systems. Ann. Oper. Res. 221 (2014) 133–159. [Google Scholar]
  • R. Church and C. ReVelle, The maximal covering location problem. In: Papers of the Regional Science Association. Vol. 32, Springer-Verlag (1974) 101–118. [CrossRef] [Google Scholar]
  • J. Current, M. Daskin and D. Schilling, Discrete network location models. Facility Locat.: App. Theory 1 (2002) 81–118. [CrossRef] [Google Scholar]
  • S.K. Das and S.K. Roy, An approximation approach for fixed-charge transportation-p-facility location problem. In: International Conference on Logistics and Supply Chain Management. Springer, Cham (2020). [Google Scholar]
  • S.K. Das and S.K. Roy, Effect of variable carbon emission in a multi-objective transportation-p-facility location problem under neutrosophic environment. Comput. Ind. Eng. 132 (2019) 311–324. [CrossRef] [Google Scholar]
  • S.K. Das, S.K. Roy and G.W. Weber, Application of type-2 fuzzy logic to a multiobjective green solid transportation–location problem with dwell time under carbon tax, cap, and offset policy: fuzzy versus nonfuzzy techniques. IEEE Trans. Fuzzy Syst. 28 (2020) 2711–2725. [CrossRef] [Google Scholar]
  • S.K. Das, S.K. Roy and G.W. Weber, An exact and a heuristic approach for the transportation-p-facility location problem. Comput. Manage. Sci. 17 (2020) 389–407. [CrossRef] [Google Scholar]
  • S.K. Das, S.K. Roy and G.W. Weber, Heuristic approaches for solid transportation-p-facility location problem. Cent. Eur. J. Oper. Res. 28 (2020) 939–961. [CrossRef] [MathSciNet] [Google Scholar]
  • S.K. Das, M. Pervin, S.K. Roy and G.W. Weber, Multi-objective solid transportation-location problem with variable carbon emission in inventory management: a hybrid approach. Ann. Oper. Res. (2021) 1–27. [Google Scholar]
  • M.S. Daskin, A maximum expected covering location model: formulation, properties and heuristic solution. Transp. Sci. 17 (1983) 48–70. [CrossRef] [Google Scholar]
  • S.G. Davis, Analysis of the deployment of emergency medical services. Omega 9 (1981) 655–657. [CrossRef] [Google Scholar]
  • D. Degel, L. Wiesche, S. Rachuba and B. Werners, Time-dependent ambulance allocation considering data-driven empirically required coverage. Health Care Manage. Sci. 18 (2015) 444–458. [CrossRef] [PubMed] [Google Scholar]
  • V.J. De Maio, I.G. Stiell, G.A. Wells, D.W. Spaite and Ontario Prehospital Advanced Life Support Study Group, Optimal defibrillation response intervals for maximum out-of-hospital cardiac arrest survival rates. Ann. Emerg. Med. 42 (2003) 242–250. [CrossRef] [Google Scholar]
  • H. Derbel, B. Jarboui, S. Hanafi and H. Chabchoub, Genetic algorithm with iterated local search for solving a location-routing problem. Expert Syst. Appl. 39 (2012) 2865–2871. [CrossRef] [Google Scholar]
  • K.F. Doerner, W.J. Gutjahr, R.F. Hartl, M. Karall and M. Reimann, Heuristic solution of an extended double-coverage ambulance location problem for Austria. Cent. Eur. J. Oper. Res. 13 (2005) 325–340. [Google Scholar]
  • A. El Fallahi and I. Sefrioui, A linear programming model and memetic algorithm for the Emergency Vehicle Routing. In: 2019 4th World Conference on Complex Systems (WCCS). IEEE (2019). [Google Scholar]
  • A. El Itani, F. Ben Abdelaziz and H. Masri, A bi-objective covering location problem: case of ambulance location in the Beirut area, Lebanon. Manage. Decis. 57 (2019) 432–444. [CrossRef] [Google Scholar]
  • E. Erkut, A. Ingolfsson and G. Erdoğan, Ambulance location for maximum survival. Nav. Res. Log. 55 (2008) 42–58. [CrossRef] [Google Scholar]
  • M. Gendreau, G. Laporte and F. Semet, Solving an ambulance location model by tabu search. Locat. Sci. 5 (1997) 75–88. [CrossRef] [Google Scholar]
  • G. Hiermann, M. Prandtstetter, A. Rendl, J. Puchinger and G.R. Raidl, Metaheuristics for solving a multimodal home-healthcare scheduling problem. Cent. Eur. J. Oper. Res. 23 (2015) 89–113. [CrossRef] [MathSciNet] [Google Scholar]
  • K. Hogan and C. ReVelle, Concepts and applications of backup coverage. Manage. Sci. 32 (1986) 1434–1444. [Google Scholar]
  • M. Kaveh and M.S. Mesgari, Improved biogeography-based optimization using migration process adjustment: an approach for location-allocation of ambulances. Comput. Ind. Eng. 135 (2019) 800–813. [CrossRef] [Google Scholar]
  • V.A. Knight, P.R. Harper and L. Smith, Ambulance allocation for maximal survival with heterogeneous outcome measures. Omega 40 (2012) 918–926. [CrossRef] [Google Scholar]
  • N. Krasnogor and J. Smith, A tutorial for competent memetic algorithms: model, taxonomy, and design issues. IEEE Trans. Evol. Comput. 9 (2005) 474–488. [CrossRef] [Google Scholar]
  • R.C. Larson, A hypercube queuing model for facility location and redistricting in urban emergency services. Comput. Oper. Res. 1 (1974) 67–95. [CrossRef] [Google Scholar]
  • H. Leknes, E.S. Aartun, H. Andersson, M. Christiansen and T.A. Granberg, Strategic ambulance location for heterogeneous regions. Eur. J. Oper. Res. 260 (2017) 122–133. [CrossRef] [Google Scholar]
  • M. Lozano, F. Herrera, N. Krasnogor and D. Molina, Real-coded memetic algorithms with crossover hill-climbing. Evol. Comput. 12 (2004) 273–302. [CrossRef] [PubMed] [Google Scholar]
  • M.B. Mandell, Covering models for two-tiered emergency medical services systems. Locat. Sci. 6 (1998) 355–368. [CrossRef] [Google Scholar]
  • R. Manfredini, O. La Cecilia, B. Boari, J. Steliu, V. Michelini, P. Carli, C. Zanotti, M. Bigoni and M. Gallerani, Circadian pattern of emergency calls: implications for ED organization. Am. J. Emerg. Med. 20 (2002) 282–286. [CrossRef] [Google Scholar]
  • V. Marianov and C. ReVelle, The queueing maximal availability location problem: a model for the siting of emergency vehicles. Eur. J. Oper. Res. 93 (1996) 110–120. [CrossRef] [Google Scholar]
  • R. McCormack and G. Coates, A simulation model to enable the optimization of ambulance fleet allocation and base station location for increased patient survival. Eur. J. Oper. Res. 247 (2015) 294–309. [CrossRef] [Google Scholar]
  • L.A. McLay, A maximum expected covering location model with two types of servers. IIE Trans. 41 (2009) 730–741. [CrossRef] [Google Scholar]
  • L.A. McLay and M.E. Mayorga, Evaluating emergency medical service performance measures. Health Care Manage. Sci. 13 (2010) 124–136. [CrossRef] [PubMed] [Google Scholar]
  • P. Merz and B. Freisleben, Fitness landscape analysis and memetic algorithms for the quadratic assignment problem. IEEE Trans. Evol. Comput. 4 (2000) 337–352. [CrossRef] [Google Scholar]
  • D.M. Miranda, R.S. de Camargo, S.V. Conceição, M.F. Porto and N.T. Nunes, A metaheuristic for the rural school bus routing problem with bell adjustment. Expert. Syst. Appl. 180 (2021) 115086. [CrossRef] [Google Scholar]
  • A. Nadizadeh and A.S. Zadeh, A bi-level model and memetic algorithm for arc interdiction location-routing problem. Comput. Appl. Math. 40 (2021) 1–44. [CrossRef] [Google Scholar]
  • H.Z. Naji, M. AL-Behadili and F. AL-Maliky, Two server dynamic coverage location model under stochastic travel time. Int. J. Appl. Comput. Math. 7 (2021) 1–19. [CrossRef] [Google Scholar]
  • J. Nelas and J. Dias, Optimal emergency vehicles location: an approach considering the hierarchy and substitutability of resources. Eur. J. Oper. Res. 287 (2020) 583–599. [CrossRef] [Google Scholar]
  • H.K. Rajagopalan, F.E. Vergara, C. Saydam and J. Xiao, Developing effective meta-heuristics for a probabilistic location model via experimental design. Eur. J. Oper. Res. 177 (2007) 83–101. [CrossRef] [Google Scholar]
  • H.K. Rajagopalan, C. Saydam and J. Xiao, A multiperiod set covering location model for dynamic redeployment of ambulances. Comput. Oper. Res. 35 (2008) 814–826. [CrossRef] [Google Scholar]
  • R. Reeves, Genetic algorithms Part A: Background. 28 (2003). [Google Scholar]
  • R. Reeves, A genetic algorithm for flowshop sequencing. Comput. Oper. Res. 22 (1995) 5–13. [CrossRef] [Google Scholar]
  • J.F. Repede and J.J. Bernardo, Developing and validating a decision support system for locating emergency medical vehicles in Louisville, Kentucky. Eur. J. Oper. Res. 75 (1994) 567–581. [CrossRef] [Google Scholar]
  • M. Reuter-Oppermann, P.L. van den Berg and J.L. Vile, Logistics for emergency medical service systems. Health Syst. 6 (2017) 187–208. [CrossRef] [Google Scholar]
  • C. ReVelle and K. Hogan, The maximum availability location problem. Transp. Sci. 23 (1989) 192–200. [CrossRef] [Google Scholar]
  • V. Schmid and K.F. Doerner, Ambulance location and relocation problems with time-dependent travel times. Eur. J. Oper. Res. 207 (2010) 1293–1303. [CrossRef] [Google Scholar]
  • L. Shaw, S.K. Das and S.K. Roy, Location-allocation problem for resource distribution under uncertainty in disaster relief operations. Soc.-Econ. Planning Sci. 82 (2022) 101232. [CrossRef] [Google Scholar]
  • B. Tirkolaee and N.S. Aydin, Integrated design of sustainable supply chain and transportation network using a fuzzy bi-level decision support system for perishable products. Expert. Syst. Appl. 195 (2022) 116628. [CrossRef] [Google Scholar]
  • E.B. Tirkolaee, A. Goli and A. Mardani, A novel two-echelon hierarchical location-allocation-routing optimization for green energy-efficient logistics systems. Ann. Oper. Res. (2021) 1–29. [Google Scholar]
  • B. Tirkolaee, A. Goli, S. Gütmen, G.W. Weber and K. Szwedzka, A novel model for sustainable waste collection arc routing problem: pareto-based algorithms. Ann. Oper. Res. (2022) 1–26. [Google Scholar]
  • E.B. Tirkolaee and A.E. Torkayesh, A cluster-based stratified hybrid decision support model under uncertainty: sustainable healthcare landfill location selection. Appl. Intell. (2022) 1–20. [Google Scholar]
  • C. Toregas, R. Swain, C. ReVelle and L. Bergman, The location of emergency service facilities. Oper. Res. 19 (1971) 1363–1373. [Google Scholar]
  • H. Toro-Daz, M.E. Mayorga, S. Chanta and L.A. McLay, Joint location and dispatching decisions for emergency medical services. Comput. Ind. Eng. 64 (2013) 917–928. [CrossRef] [Google Scholar]
  • H. Toro-Daz, M.E. Mayorga, L.A. McLay, H.K. Rajagopalan and C. Saydam, Reducing disparities in large-scale emergency medical service systems. J. Oper. Res. Soc. 66 (2015) 1169–1181. [CrossRef] [Google Scholar]
  • P.L. Van Den Berg and K. Aardal, Time-dependent MEXCLP with start-up and relocation cost. Eur. J. Oper. Res. 242 (2015) 383–389. [CrossRef] [Google Scholar]
  • H.P. Williams, Model Building in Mathematical Programming. John Wiley & Sons (2013). [Google Scholar]
  • E. Yadegari, A. Alem-Tabriz and M. Zandieh, A memetic algorithm with a novel neighborhood search and modified solution representation for closed-loop supply chain network design. Comput. Ind. Eng. 128 (2019) 418–436. [Google Scholar]
  • X. Yan and X. Gu, Bi-objective no-wait multiproduct multistage product scheduling problem with flexible due dates based on MOIDE-MA. Comput. Oper. Res. 137 (2022) 105543. [CrossRef] [Google Scholar]
  • X. Yang, N. Bostel and P. Dejax, A MILP model and memetic algorithm for the hub location and routing problem with distinct collection and delivery tours. Comput. Ind. Eng. 135 (2019) 105–119. [CrossRef] [Google Scholar]
  • S. Yoon and L.A. Albert, An expected coverage model with a cutoff priority queue. Health Care Manage. Sci. 21 (2018) 517–533. [CrossRef] [PubMed] [Google Scholar]
  • S. Yoon and L.A. Albert, Dynamic dispatch policies for emergency response with multiple types of vehicles. Transp. Res. Part E: Logistics Transp. Rev. 152 (2021) 102405. [CrossRef] [Google Scholar]
  • S. Yoon, L.A. Albert and V.M. White, A stochastic programming approach for locating and dispatching two types of ambulances. Transp. Sci. 55 (2021) 275–296. [CrossRef] [Google Scholar]
  • Z. Zhang, M. Liu and A. Lim, A memetic algorithm for the patient transportation problem. Omega 54 (2015) 60–71. [CrossRef] [Google Scholar]
  • L. Zhen, K. Wang, H. Hu and D. Chang, A simulation optimization framework for ambulance deployment and relocation problems. Comput. Ind. Eng. 72 (2014) 12–23. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.