Open Access
Issue
RAIRO-Oper. Res.
Volume 56, Number 4, July-August 2022
Page(s) 2881 - 2894
DOI https://doi.org/10.1051/ro/2022099
Published online 24 August 2022
  • K.J. Arrow, T. Harris and J. Marschak, Optimal inventory policy. Econom. J. Econom. Soc. 19 (1951) 250–272. [Google Scholar]
  • A. Daddi-Moussa-Ider, Asymmetric stokes flow induced by a transverse point force acting near a finite-sized elastic membrane. J. Phys. Soc. Jpn. 89 (2020) 124401. [CrossRef] [Google Scholar]
  • A. Daddi-Moussa-Ider, B. Kaoui and H. Löwen, Axisymmetric flow due to a Stokeslet near a finite-sized elastic membrane. J. Phys. Soc. Jpn. 88 (2019) 054401. [CrossRef] [Google Scholar]
  • A.S. Dibu, M.J. Jacob, A.D. Papaioannou and L. Ramsden, Delayed capital injections for a risk process with Markovian arrivals. Methodol. Comput. Appl. Probab. 23 (2021) 1057–1076. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Doucet, A.M. Johansen and V.B. Tadic, On solving integral equations using Markov chain Monte Carlo methods. Appl. Math. Comput. 216 (2010) 2869–2880. [MathSciNet] [Google Scholar]
  • A.J. Fabens, The solution of queueing and inventory models by semi-Markov processes. J. R. Stat. Soc. Ser. B (Methodological) 23 (1961) 113–127. [Google Scholar]
  • W. Feller, An Introduction to Probability Theory and Its Applications, 2nd edition. John Wiley & Sons (1971). [Google Scholar]
  • C. Fuh, S. Fuh, Y. Liu and C. Wang, Renyi divergence in general hidden Markov models. Preprint: arxiv.org/abs/2106.01645v1 (2021). [Google Scholar]
  • P. Guo, Numerical simulation for Fredholm integral equation of the second kind. J. Appl. Math. Phys. 8 (2020) 2438–2446. [CrossRef] [MathSciNet] [Google Scholar]
  • J.M. Gutiérrez, M.Á. Hernández-Verón and E. Martnez, Improved iterative solution of linear Fredholm integral equations of second kind via inverse-free iterative schemes. Mathematics 8 (2020) 1747. [CrossRef] [Google Scholar]
  • R. Karim and K. Nakade, A Markovian production-inventory system with consideration of random quality disruption. J. Adv. Mech. Des. Syst. Manuf. 14 (2020) 1–18. [Google Scholar]
  • T. Komorowski and T. Szarek, On ergodicity of some Markov processes. Ann. Probab. 38 (2010) 1401–1443. [CrossRef] [MathSciNet] [Google Scholar]
  • C. Lindemann and A. Thümmler, Transient analysis of deterministic and stochastic Petri nets with concurrent deterministic transitions. Perform. Eval. 36–37 (1999) 35–54. [CrossRef] [Google Scholar]
  • M.A. Mohammad, Numerical solution of Fredholm integral equations of the second kind based on tight framelets generated by the oblique extension principle. Symmetry 11 (2019) 854. [CrossRef] [Google Scholar]
  • M.D. Raisinghania, Integral Equations and Boundary Value Problems, 1st edition, S. Chand & Company LTD (2007). [Google Scholar]
  • L. Ramsden and A. Papaioannou, On the time to ruin for a dependent delayed capital injection risk model. Appl. Math. Comput. 352 (2019) 119–135. [MathSciNet] [Google Scholar]
  • Y. Tian, Markov chain Monte Carlo method to solve Fredholm integral equations. Therm. Sci. 22 (2018) 1673–1678. [CrossRef] [Google Scholar]
  • W. Werner, On the spatial Markov property of soups of unoriented and oriented loops. In: Séminaire de Probabilités XLVIII, edited by C. Donati-Martin, A. Lejay and A. Rouault, Springer, Charm (2016) 481–503. [CrossRef] [Google Scholar]
  • H. ZhiMin, Y. ZaiZai and C. JianRui, Monte Carlo method for solving the Fredholm integral equations of the second kind. Transp. Theory Stat. Phys. 41 (2012) 513–528. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.