Open Access
RAIRO-Oper. Res.
Volume 56, Number 4, July-August 2022
Page(s) 2853 - 2880
Published online 24 August 2022
  • N. Amowine, Z. Ma, M. Li, Z. Zhou, E.Y. Naminse and J. Amowine, Measuring dynamic energy efficiency in Africa: a slack-based DEA approach. Energy Sci. Eng. 8 (2020) 3854–3865. [CrossRef] [Google Scholar]
  • R.D. Banker, A. Charnes and W.W. Cooper, Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manage. Sci. 30 (1984) 1078–1092. [Google Scholar]
  • P. Bansal, A. Mehra and S. Kumar, Dynamic metafrontier Malmquist-Luenberger productivity index in network DEA: an application to banking data. Comput. Econ. 59 (2021) 1–28. [Google Scholar]
  • A. Charnes, W.W. Cooper and E. Rhodes, Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2 (1978) 429–444. [Google Scholar]
  • W.W. Cooper, L.M. Seiford and K. Tone, Data Envelopment Analysis: A Comprehensive Text With Models, applications, references and DEA-Solver Software, 2nd edition. Springer, New York (2007). [Google Scholar]
  • A. Emrouznejad and E. Thanassoulis, A mathematical model for dynamic efficiency using data envelopment analysis. Appl. Math. Comput. 160 (2005) 363–378. [Google Scholar]
  • A. Emrouznejad, M. Tavana and A. Hatami-Marbini, The state of the art in fuzzy data envelopment analysis. In Performance measurement with fuzzy data envelopment analysis.Springer, Berlin, Heidelberg (2014) 1–45. [Google Scholar]
  • S. Fallah-Fini, K. Triantis and A.L. Johnson, Reviewing the literature on non-parametric dynamic efficiency measurement: state-of-the-art. J. Product. Anal. 41 (2014) 51–67. [CrossRef] [Google Scholar]
  • R. Färe and S. Grosskopf, Intertemporal Production Frontiers: With Dynamic DEA. Kluwer Academic Publishers, Boston (1996). [CrossRef] [Google Scholar]
  • S. Ghobadi, A generalized DEA model for inputs (outputs) estimation under inter-temporal dependence. RAIRO-Oper. Res. 53 (2019) 1791–1805. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • S. Ghobadi, G.R. Jahanshahloo, F.H. Lotfi and M. Rostami-Malkhalifeh, Dynamic inverse DEA in the presence of fuzzy data. Adv. Environ. Biol. 8 (2014) 139–151. [Google Scholar]
  • H. Gholizadeh and H. Fazlollahtabar, Production control process using integrated robust data envelopment analysis and fuzzy neural network. Int. J. Math. Eng. Manag. Sci. 4 (2019) 580. [Google Scholar]
  • M.H. Gholizadeh, M.E. Azbari and R. Abbasi, Designing dynamic fuzzy Data Envelopment Analysis model for measuring efficiency of the investment corporations in Tehran stock exchange. Perform. Manag. Measur. Data Envelop. Anal. (2010) 96. [Google Scholar]
  • H. Gholizadeh, A.M. Fathollahi-Fard, H. Fazlollahtabar and V. Charles, Fuzzy data-driven scenario-based robust data envelopment analysis for prediction and optimisation of an electrical discharge machine’s parameters. Expert Syst. Appl. 193 (2022) 116419. [CrossRef] [Google Scholar]
  • A.A. Hasani and H. Mokhtari, Self-efficiency Assessment of Sustainable Dynamic Network Healthcare Service System under Uncertainty: Hybrid Fuzzy DEA-MCDM Method. Sci. Iran. (2020). [Google Scholar]
  • A. Hatami-Marbini, A. Emrouznejad and M. Tavana, A taxonomy and review of the fuzzy data envelopment analysis literature: two decades in the making. Eur. J. Oper. Res. 214 (2011) 457–472. [Google Scholar]
  • F. Hosseinzadeh Lotfi and N. Poursakhi, A mathematical model for dynamic efficiency using desirable and undesirable input-output. Appl. Math. Sci. 6 (2012) 141–151. [Google Scholar]
  • A.R. Jafarian-Moghaddam and K. Ghoseiri, Fuzzy dynamic multi-objective Data Envelopment Analysis model. Expert Syst. Appl. 38 (2011) 850–855. [CrossRef] [Google Scholar]
  • A.R. Jafarian-Moghaddam and K. Ghoseiri, Multi-objective data envelopment analysis model in fuzzy dynamic environment with missing values. Int. J. Adv. Manuf. Technol. 61 (2012) 771–785. [CrossRef] [Google Scholar]
  • M. Jagadeeswari and V.L. GomathiNayagam, Approximation of Parabolic Fuzzy Numbers. In FSDM (2017) 107–124. [Google Scholar]
  • C. Kao, Dynamic data envelopment analysis: a relational analysis. Eur. J. Oper. Res. 272 (2013) 325–330. [CrossRef] [Google Scholar]
  • C. Kao and S.T. Liu, Fuzzy efficiency measures in data envelopment analysis. Fuzzy Sets Syst. 113 (2000) 427–437. [Google Scholar]
  • S. Khodaparasti and H.R. Maleki, A new combined dynamic location model for emergency medical services in fuzzy environment. In 2013 13th Iranian Conference on Fuzzy Systems (IFSC), IEEE (2013) 1–6. [Google Scholar]
  • G. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic. Prentice Hall, New Jersey (1995). [Google Scholar]
  • S. Kordrostami and M.J.S. Noveiri, Evaluating the multi-period systems efficiency in the presence of fuzzy data. Fuzzy Inf. Eng. 9 (2017) 281–298. [CrossRef] [MathSciNet] [Google Scholar]
  • F.B.A.R. Mariz, M.R. Almeida and D. Aloise, A review of dynamic data envelopment analysis: state of the art and applications. Int. Trans. Oper. Res. 25 (2018) 469–505. [CrossRef] [MathSciNet] [Google Scholar]
  • J. Nemoto and M. Goto, Dynamic data envelopment analysis: modeling intertemporal behavior of a firm in the presence of productive inefficiencies. Econ. Lett. 64 (1999) 51–56. [Google Scholar]
  • L. Olfat and M. Pishdar, Interval type-2 fuzzy dynamic network data envelopment analysis with undesirable outputs considering double frontiers: an application to Iran airports’ sustainability evaluation. Int. J. Ind. Eng. 24 (2017) 635–662. [Google Scholar]
  • L. Olfat, M. Amiri, J.B. Soufi and M. Pishdar, A dynamic network efficiency measurement of airports performance considering sustainable development concept: A fuzzy dynamic network-DEA approach. J. Air Transp. Manag. 57 (2016) 272–290. [CrossRef] [Google Scholar]
  • P. Peykani, E. Mohammadi, A. Emrouznejad, M.S. Pishvaee and M. Rostamy-Malkhalifeh, Fuzzy data envelopment analysis: an adjustable approach. Expert Syst. Appl. 136 (2019) 439–452. [CrossRef] [Google Scholar]
  • P. Peykani, E. Memar-Masjed, N. Arabjazi and M. Mirmozaffari, Dynamic performance assessment of hospitals by applying credibility-based fuzzy window data envelopment analysis. Healthcare 10 (2022) 876. [CrossRef] [PubMed] [Google Scholar]
  • J. Puri and S.P. Yadav, A concept of fuzzy input mix-efficiency in fuzzy DEA and its application in banking sector. Expert Syst. Appl. 40 (2013) 1437–1450. [Google Scholar]
  • RBI, Reserve bank of India: Statistical tables relating to banks in India, 2019–2021 (2021). Available from:!4. [Google Scholar]
  • M.A. Sahil, M. Kaushal and Q.D. Lohani, A Parabolic Based Fuzzy Data Envelopment Analysis Model with an Application. In 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), IEEE (2020) 1–8. [Google Scholar]
  • J.K. Sengupta, A fuzzy systems approach in data envelopment analysis. Comput. Math. with Appl. 24 (1992) 259–266. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Soleimani-damaneh, An enumerative algorithm for solving nonconvex dynamic DEA models. Optim. Lett. 7 (2013) 101–115. [CrossRef] [MathSciNet] [Google Scholar]
  • E. Soltanzadeh and H. Omrani, Dynamic network data envelopment analysis model with fuzzy inputs and outputs: An application for Iranian Airlines. Appl. Soft Comput. 63 (2018) 268–288. [CrossRef] [Google Scholar]
  • T. Sueyoshi and K. Sekitani, Returns to scale in dynamic DEA. Eur. J. Oper. Res. 161 (2005) 536–544. [CrossRef] [Google Scholar]
  • K. Tone, A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 130 (2001) 498–509. [Google Scholar]
  • K. Tone and M. Tsutsui, Dynamic DEA: a slacks-based measure approach. Omega 38 (2010) 145–156. [CrossRef] [Google Scholar]
  • Y.M. Wang and K.S. Chin, Fuzzy data envelopment analysis: A fuzzy expected value approach. Expert Syst. Appl. 38 (2011) 11678–11685. [CrossRef] [Google Scholar]
  • P. Wanke, M.A.K. Azad, A. Emrouznejad and J. Antunes, A dynamic network DEA model for accounting and financial indicators: A case of efficiency in MENA banking. Int. Rev. Econ. Finance 61 (2019) 52–68. [CrossRef] [Google Scholar]
  • C. Woo, Y. Chung, D. Chun, H. Seo and S. Hong, The static and dynamic environmental efficiency of renewable energy: A Malmquist index analysis of OECD countries. Renew. Sust. Energ. Rev. 47 (2015) 367–376. [CrossRef] [Google Scholar]
  • B.C. Xie, L.F. Shang, S.B. Yang and B.W. Yi, Dynamic environmental efficiency evaluation of electric power industries: Evidence from OECD (Organization for Economic Cooperation and Development) and BRIC (Brazil, Russia, India and China) countries. Energy 74 (2014) 147–157. [CrossRef] [Google Scholar]
  • L. Xie, C. Chen and Y. Yu, Dynamic Assessment of Environmental Efficiency in Chinese Industry: A Multiple DEA Model with a Gini Criterion Approach. Sustainability 11 (2019) 2294. [CrossRef] [Google Scholar]
  • A. Yaghoubi and M. Amiri, Designing a new multi-objective fuzzy stochastic DEA model in a dynamic environment to estimate efficiency of decision making units (Case Study: An Iranian Petroleum Company). J. Ind. Eng. Manag. 2 (2015) 26–42. [Google Scholar]
  • B.T. Yen and Y.C. Chiou, Dynamic fuzzy data envelopment analysis models: Case of bus transport performance assessment. RAIRO-Oper. Res. 53 (2019) 991–1005. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • E. Zeinodin and S. Ghobadi, Merging decision-making units under inter-temporal dependence. IMA J. Manag. Math. 31 (2020) 139–166. [Google Scholar]
  • L.M. Zerafat Angiz, A. Emrouznejad and A. Mustafa, Fuzzy assessment of performance of a decision making units using DEA: A non-radial approach. Expert Syst. Appl. 37 (2010) 5153–5157. [CrossRef] [Google Scholar]
  • X. Zhou, L. Li, H. Wen, X. Tian, S. Wang and B. Lev, Supplier’s goal setting considering sustainability: An uncertain dynamic Data Envelopment Analysis based benchmarking model. Inf. Sci. 545 (2021) 44–64. [CrossRef] [Google Scholar]
  • H.J. Zimmermann, Fuzzy Set Theory and its Applications, 3rd edition. Kluwer-Nijhoff Publishing, Boston (1996). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.