Open Access
Issue |
RAIRO-Oper. Res.
Volume 56, Number 4, July-August 2022
|
|
---|---|---|
Page(s) | 2833 - 2851 | |
DOI | https://doi.org/10.1051/ro/2022132 | |
Published online | 24 August 2022 |
- M. Avriel and D.J. Wilde, Engineering design under uncertainty. Ind. Eng. Chem. Process Des. Dev. 8 (1969) 127–131. [Google Scholar]
- M. Avriel, R. Dembo and U. Passy, Solution of generalized geometric programs. Int. J. Numer. Method Eng. 9 (1975) 149–168. [CrossRef] [Google Scholar]
- C.S. Beightler and D.T. Phillips, Applied Geometric Programming. Wiley, New York (1976). [Google Scholar]
- T.C.E. Cheng, An economic order quantity model with demand-dependent unit production cost and imperfect production process. IIE Trans. 23 (1991) 23–28. [CrossRef] [Google Scholar]
- J.C. Choi and D.L. Bricker, Effectiveness of a geometric programming algorithm for optimization of machining economics models. Comput. Oper. Res. 10 (1996) 957–961. [CrossRef] [Google Scholar]
- C. Chu and D.F. Wong, VLSI circuit performance optimization by geometric programming. Ann. Oper. Res. 105 (2001) 37–60. [CrossRef] [MathSciNet] [Google Scholar]
- R.J. Duffin and E.L. Peterson, Geometric programming with signomials. J. Optim. Theory Appl. 11 (1973) 3–35. [CrossRef] [MathSciNet] [Google Scholar]
- R.J. Duffin, E.L. Peterson and C.M. Zener, Geometric Programming Theory and Applications. Wiley, New York (1967). [Google Scholar]
- S.C. Fang, E.L. Peterson and J.R. Rajasekera, Controlled dual perturbations for posynomial programs. Eur. J. Oper. Res. 35 (1988) 111–117. [CrossRef] [Google Scholar]
- M.D. Hershenson, S.P. Boyd and T.H. Lee, Optimal design of a CMOS op-amp via geometric programming. IEEE Trans. Comput. Aid. Design. 20 (2001) 1–21. [CrossRef] [Google Scholar]
- H. Jung and C.M. Klein, Optimal inventory policies under decreasing cost functions via geometric programming. Eur. J. Oper. Res. 132 (2001) 628–642. [CrossRef] [Google Scholar]
- D. Kim and W.J. Lee, Optimal joint pricing and lot sizing with fixed and variable capacity. Eur. J. Oper. Res. 109 (1998) 212–227. [CrossRef] [Google Scholar]
- K.O. Kortanek and H. No, A second order affine scaling algorithm for the geometric programming dual with logarithmic barrier. Optimization 23 (1992) 303–322. [CrossRef] [MathSciNet] [Google Scholar]
- K.O. Kortanek, X. Xu and Y. Ye, An infeasible interior-point algorithm for solving primal and dual geometric programs. Math. Program. 76 (1997) 155–181. [Google Scholar]
- W.J. Lee, Determining order quantity and selling price by geometric programming. Optimal solution, bounds, and sensitivity. Decis. Sci. 24 (1993) 76–87. [CrossRef] [Google Scholar]
- S.T. Liu, Posynomial geometric programming with parametric uncertainty. Eur. J. Oper. Res. 168 (2006) 345–353. [CrossRef] [Google Scholar]
- S.T. Liu, Geometric programming with fuzzy parameters in engineering optimization. Int. J. Approx. Reason. 46 (2007) 484–498. [CrossRef] [Google Scholar]
- B. Liu, Uncertainty Theory, 4th edition. Springer, Berlin (2015). [Google Scholar]
- C.D. Maranas and C.A. Floudas, Global optimization in generalized geometric programming. Comput. Chem. Eng. 21 (1997) 351–369. [CrossRef] [Google Scholar]
- P. Peykani, E. Mohammadi, M. Saman Pishvaee, M. Rostami Malkhalifeh and A. Jabbarzadeh, A novel fuzzy data envelopment analysis based on robust possibilistic programming: possibility, necessity and credibility-based approaches. RAIRO-Oper. Res. 52 (2018) 1445–1463. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- J. Rajgopal, An alternative approach to the refined duality theory of geometric programming, J. Math. Anal. Appl. 167 (1992) 266–288. [CrossRef] [MathSciNet] [Google Scholar]
- J. Rajgopal and D.L. Bricker, Posynomial geometric programming as a special case of semi-infinite linear programming. J. Optim. Theory Appl. 66 (1990) 455–475. [CrossRef] [MathSciNet] [Google Scholar]
- J. Rajgopal and D.L. Bricker, Solving posynomial geometric programming problems via generalized linear programming. Comput. Optim. Appl. 21 (2002) 95–109. [CrossRef] [MathSciNet] [Google Scholar]
- T.K. Roy and M. Maiti, A fuzzy EOQ model with demand-dependent unit cost under limited storage capacity. Eur. J. Oper. Res. 99 (1997) 425–432. [CrossRef] [Google Scholar]
- C.H. Scott and T.R. Jefferson, Allocation of resources in project management. Int. J. Syst. Sci. 26 (1995) 413–420. [CrossRef] [Google Scholar]
- R.K. Shiraz and H. Fukuyama, Integrating geometric programming with rough set theory. Oper. Res. Int. J. 18 (2018) 1–32. [CrossRef] [Google Scholar]
- R.K. Shiraz, M. Tavana, D. Di Caprio and H. Fukuyama, Solving geometric programming problems with normal, linear and zigzag uncertainty distributions. J. Optim. Theory Appl. 170 (2016) 243–265. [CrossRef] [MathSciNet] [Google Scholar]
- R.K. Shiraz, M. Tavana, H. Fukuyama and D. Di Caprio, Fuzzy chance-constrained geometric programming: the possibility, necessity and credibility approaches. Oper. Res. Int. J. 17 (2017) 67–97. [CrossRef] [Google Scholar]
- R.K. Shiraz, M. Tavana and D. Di Caprio, Chance-constrained data envelopment analysis modeling with random-rough data. RAIRO-Oper. Res. 52 (2018) 259–284. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- R.K. Shiraz, S. Khodayifar and P.M. Pardalos, Copula theory approach to stochastic geometric programming. J. Global Optim. 81 (2021) 435–468. [CrossRef] [MathSciNet] [Google Scholar]
- S.B. Sinha, A. Biswas and M.P. Biswal, Geometric programming problems with negative degrees of difficulty. Eur. J. Oper. Res. 28 (1987) 101–103. [CrossRef] [Google Scholar]
- E.L. Solano-Charris, C. Prins and A.C. Santos, Solving the bi-objective robust vehicle routing problem with uncertain costs and demands. RAIRO-Oper. Res. 50 (2016) 689–714. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- B.M. Worrall and M.A. Hall, The analysis of an inventory control model using posynomial geometric programming. Int. J. Prod. Res. 20 (1982) 657–667. [CrossRef] [Google Scholar]
- H.H. Yang and D.L. Bricker, Investigation of path-following algorithms for signomial geometric programming problems. Eur. J. Oper. Res. 103 (1997) 230–241. [CrossRef] [Google Scholar]
- J. Zhu, K.O. Kortanek and S. Huang, Controlled dual perturbations for central path trajectories in geometric programming. Eur. J. Oper. Res. 73 (1994) 524–531. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.