Open Access
Issue
RAIRO-Oper. Res.
Volume 56, Number 5, September-October 2022
Page(s) 3245 - 3256
DOI https://doi.org/10.1051/ro/2022142
Published online 12 September 2022
  • P. Bogacki and L.F. Shampine, A 3 (2) pair of Runge-Kutta formulas. Appl. Math. Lett. 2 (1989) 321–325. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Boutayeb and A. Chetouani, A population model of diabetes and pre-diabetes. Int. J. Comput. Math. 84 (2007) 57–66. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Boutayeb, E.H. Twizell, K. Achouayb and A. Chetouani, A mathematical model for the burden of diabetes and its complications. Biomed. Eng. Online 3 (2004) 1–8. [CrossRef] [Google Scholar]
  • A. Boutayeb, A. Chetouani, A. Achouyab and E.H. Twizell, A non-linear population model of diabetes mellitus. J. Appl. Math. Comput. 21 (2006) 127–139. [CrossRef] [MathSciNet] [Google Scholar]
  • W.E. Boyce and R.C. DiPrima, Elementary Differential Equations and Boundary Value Problems. Wiley, New York (2009). [Google Scholar]
  • A.A.M. Daud, C.Q. Toh and S. Saidun, Development and analysis of a mathematical model for the population dynamics of diabetes mellitus during pregnancy. Math. Models Comput. Simul. 12 (2020) 620–630. [CrossRef] [MathSciNet] [Google Scholar]
  • K. Deb, Multi-objective optimisation using evolutionary algorithms: An introduction. In: Multi-objective evolutionary optimisation for product design and manufacturing. Springer, London (2011) 3–34. [CrossRef] [Google Scholar]
  • M. Derouich, A. Boutayeb, W. Boutayeb and M. Lamlili, Optimal control approach to the dynamics of a population of diabetics. Appl. Math. Sci. 8 (2014) 2773–2782. [Google Scholar]
  • W.H. Fleming and R.W. Rishel, Deterministic and Stochastic Optimal Control. Springer Verlag, New York (1975). [CrossRef] [Google Scholar]
  • M. Frigo and S.G. Johnson, FFTW: An Adaptive Software Architecture for the FFT. Proc. Int. Conf. Acoust. Speech Signal Process. 3 (1998) 1381–1384. [Google Scholar]
  • A.F.O. Gafar and I. Tahyudin, Comparison between k-means and fuzzy C-means clustering in network traffic activities. In: International Conference on Management Science and Engineering Management. Springer, Cham (2017) 300–310. [Google Scholar]
  • D. Gueho, M. Majji and P. Singla, Data-based Modeling and Control of Dynamical Systems: Parameter Estimation. In: 2021 60th IEEE Conference on Decision and Control (CDC). IEEE (2021) 31–36. [Google Scholar]
  • A.B. Gumel, P.N. Shivakumar and B.M. Sahai, A mathematical model for the dynamics of HIV-1 during the typical course of infection. Proc. 3rdWorld Cong. Nonlinear Anal. 47 (2011) 2073–2083. [Google Scholar]
  • International Diabetes Federation (IDF), IDF DIABETES ATLAS, 9th edition (2019). [Google Scholar]
  • A. Kouidere, O. Balatif, H. Ferjouchia, A. Boutayeb and M. Rachik, Optimal control strategy for a discrete time to the dynamics of a population of diabetics with highlighting the impact of living environment. Discrete Dyn. Nat. Soc. 2019 (2019). [CrossRef] [Google Scholar]
  • A. Kouidere, A. Labzai, H. Ferjouchia, O. Balatif and M. Rachik, A New Mathematical Modeling with Optimal Control Strategy for the Dynamics of Population of Diabetics and Its Complications with Effect of Behavioral Factors. J. Appl. Math. 2020 (2020). [Google Scholar]
  • A. Kouidere, B. Khajji, O. Balatif and M. Rachik, A multi-age mathematical modeling of the dynamics of population diabetics with effect of lifestyle using optimal control. J. Appl. Math. Comput. (2021) 1–29. [Google Scholar]
  • A. Mahata, B. Roy, S.P. Mondal and S. Alam, Application of ordinary differential equation in glucose-insulin regulatory system modeling in fuzzy environment. Ecol. Genet. Genom. 3 (2017) 60–66. [Google Scholar]
  • A. Mahata, S.P. Mondal, S. Alam, A. Chakraborty, S.K. De and A. Goswami, Mathematical model for diabetes in fuzzy environment with stability analysis, J. Intell. Fuzzy Syst. 36 (2019) 2923–2932. [CrossRef] [Google Scholar]
  • A. Makroglou, I. Karaoustas, J. Li and Y. Kuang, Delay differential equation models in diabetes modeling. Theor. Biol. Med. Model. (2009). [Google Scholar]
  • H. Mewada, J.F. Al-Asad and A.H. Khan, Landscape Change Detection Using Auto-Optimized K-means Algorithm. In: International Symposium on Advanced Electrical and Communication Technologies (ISAECT). IEEE 2020 (2020) 1–6. [Google Scholar]
  • R.L. Ollerton, Application of optimal control theory to diabetes mellitus. Int. J. Control 50 (1989) 2503–2522. [CrossRef] [Google Scholar]
  • A.H. Permatasari, R.H. Tjahjana and T. Udjiani, Existence and characterization of optimal control in mathematics model of diabetics population. J. Phys. Conf. Ser. IOP Pub. (2018) 012069. [CrossRef] [Google Scholar]
  • E.H. Ruspini, J.C. Bezdek, J.M. Keller, Fuzzy clustering: A historical perspective. IEEE Comput. Intell. Mag. 14 (2019) 45–55. [CrossRef] [Google Scholar]
  • G.W. Swan, An optimal control model of diabetes mellitus. Bull. Math. Biol. 44 (1982) 793–808. [CrossRef] [MathSciNet] [Google Scholar]
  • P. Wang, J. Huang, Z. Cui, L. Xie and J.A. Chen, Gaussian error correction multiobjective positioning model with NSGA-II. Concurr. Comput. Pract. Exp. 32 (2020) e5464. [Google Scholar]
  • World Health Organisation, Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia, WHO, Geneva (2016). [Google Scholar]
  • T.T. Yusuf, Optimal control of incidence of medical complications in a diabetic patients’ population. FUTA J. Res. Sci. 11 (2015) 180–189. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.