Open Access
Issue |
RAIRO-Oper. Res.
Volume 56, Number 5, September-October 2022
|
|
---|---|---|
Page(s) | 3257 - 3265 | |
DOI | https://doi.org/10.1051/ro/2022144 | |
Published online | 14 September 2022 |
- J. Cai, X. Wang and G. Yan, A note on the existence of fractional f-factors in random graphs. Acta Math. Appl. Sin. Engl. Ser. 30 (2014) 677–680. [CrossRef] [MathSciNet] [Google Scholar]
- Y. Egawa and M. Kano, Sufficient conditions for graphs to have (g, f)-factors. Discrete Math. 151 (1996) 87–90. [CrossRef] [MathSciNet] [Google Scholar]
- W. Gao and W. Wang, Degree sum condition for fractional ID-k-factor-critical graphs. Miskolc Math. Notes 18 (2017) 751–758. [CrossRef] [MathSciNet] [Google Scholar]
- W. Gao, J. Guirao and Y. Chen, A toughness condition for fractional (k, m)-deleted graphs revisited. Acta Math. Sin. Engl. Ser. 35 (2019) 1227–1237. [CrossRef] [MathSciNet] [Google Scholar]
- W. Gao, W. Wang and J. Guirao, The extension degree conditions for fractional factor. Acta Math. Sin. Engl. Ser. 36 (2020) 305–317. [CrossRef] [MathSciNet] [Google Scholar]
- N. Haghparast and K. Ozeki, 2-Factors of cubic bipartite graphs. Discrete Math. 344 (2021) 112357. [CrossRef] [Google Scholar]
- P. Holub, Z. Ryjacek, P. Vrana, S. Wang and P.L. Xiong, Forbidden pairs of disconnected graphs for 2-factor of connected graphs. J. Graph Theory 100 (2022) 209–231. [CrossRef] [MathSciNet] [Google Scholar]
- P. Katerinis, Fractional l-factors in regular graphs. Aust. J. Combin. 73 (2019) 432–439. [Google Scholar]
- Z. Li, G. Yan and X. Zhang, On fractional (g, f)-covered graphs. OR Trans. China 6 (2002) 65–68. [Google Scholar]
- H. Liu, Binding number for path-factor uniform graphs. Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 23 (2022) 25–32. [MathSciNet] [Google Scholar]
- G. Liu and L. Zhang, Toughness and the existence of fractional k-factors of graphs. Discrete Math. 308 (2008) 1741–1748. [CrossRef] [MathSciNet] [Google Scholar]
- H. Matsuda, Fan-type results for the existence of [a, b]-factors. Discrete Math. 306 (2006) 688–693. [CrossRef] [MathSciNet] [Google Scholar]
- W. Shiu and G. Liu, k-factors in regular graphs. Acta Math. Sin-English Ser. 24 (2008) 1213–1220. [CrossRef] [MathSciNet] [Google Scholar]
- S. Wang and W. Zhang, Research on fractional critical covered graphs. Probl. Inf. Transm. 56 (2020) 270–277. [CrossRef] [MathSciNet] [Google Scholar]
- S. Wang and W. Zhang, On k-orthogonal factorizations in networks. RAIRO-Oper. Res. 55 (2021) 969–977. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- S. Wang and W. Zhang, Isolated toughness for path factors in networks. RAIRO-Oper. Res. 56 (2022) 2613–2619. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- S. Zhou, A neighborhood union condition for fractional (a, b, k)-critical covered graphs. Discrete Appl. Math. (2021) DOI: 10.1016/j.dam.2021.05.022. [Google Scholar]
- S. Zhou, A result on fractional (a, b, k)-critical covered graphs. Acta Math. Appl. Sin. Engl. Ser. 37 (2021) 657–664. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou, Binding numbers and restricted fractional (g, f)-factors in graphs. Discrete Appl. Math. 305 (2021) 350–356. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou, Path factors and neighborhoods of independent sets in graphs. Acta Math. Appl. Sin. Engl. Ser. (2022) DOI: 10.1007/s10255-022-1096-2. [Google Scholar]
- S. Zhou, Remarks on restricted fractional (g, f)-factors in graphs. Discrete Appl. Math. (2022) DOI: 10.1016/j.dam.2022.07.020. [Google Scholar]
- S. Zhou and Q. Bian, The existence of path-factor uniform graphs with large connectivity. RAIRO-Oper. Res. 56 (2022) 2919–2927. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- S. Zhou, J. Wu and Y. Xu, Toughness, isolated toughness and path factors in graphs. Bull. Aust. Math. Soc. 106 (2022) 195–202. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou and H. Liu, Discussions on orthogonal factorizations in digraphs. Acta Math. Appl. Sin. Engl. Ser. 38 (2022) 417–425. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou, Q. Bian and Q. Pan, Path factors in subgraphs. Discrete Appl. Math. 319 (2022) 183–191. [CrossRef] [Google Scholar]
- S. Zhou, H. Liu and Y. Xu, A note on fractional ID-[a, b]-factor-critical covered graphs. Discrete Appl. Math. 319 (2022) 511–516. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou, Z. Sun and Q. Bian, Isolated toughness and path-factor uniform graphs (II). Indian J. Pure Appl. Math. (2022) DOI: 10.1007/s13226-022-00286-x. [Google Scholar]
- S. Zhou, J. Wu and Q. Bian, On path-factor critical deleted (or covered) graphs. Aequationes Math. 96 (2022) 795–802. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou, J. Wu and H. Liu, Independence number and connectivity for fractional (a, b, k)-critical covered graphs. RAIRO-Oper. Res. 56 (2022) 2535–2542. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.