Open Access
RAIRO-Oper. Res.
Volume 56, Number 6, November-December 2022
Page(s) 3941 - 3953
Published online 25 November 2022
  • Forrester Research, Customer desires vs. retailer capabilities: minding the omnichannel commerce gap. Tech. rept Forrester Consulting (2014). [Google Scholar]
  • G.D. Eppen, Effects of centralization on expected costs in a multi-location newsboy problem. Manage. Sci. 25 (1979) 498–501. [CrossRef] [Google Scholar]
  • A. Federgruen and P. Zipkin, Approximations of dynamic, multi-location production and inventory problems. Manage. Sci. 30 (1984) 69–84. [CrossRef] [Google Scholar]
  • C.J. Corbett and K. Rajaram, A generalization of the inventory pooling effect to nonnormal dependent demand. M&SOM-Manuf. Serv. Oper. 8 (2006) 351–358. [CrossRef] [Google Scholar]
  • H.Y. Mak and Z.J.M. Shen, Pooling and dependence of demand and yield in multiple-location inventory systems. M&SOM-Manuf. Serv. Oper. 16 (2014) 263–269. [CrossRef] [Google Scholar]
  • K. Bimpikis and M.G. Markakis, Inventory pooling under heavy-tailed demand. Manage. Sci. 62 (2016) 1800–1813. [CrossRef] [Google Scholar]
  • Y. Gerchak, Allocating pooled inventory according to contributions and entitlements. Decis. Making. Manuf. Serv. 9 (2015) 51–54. [MathSciNet] [Google Scholar]
  • H. Amrani and E. Khmelnitsky, Optimal division of inventory between depot and bases. Nav. Res. Log. 64 (2017) 3–18. [CrossRef] [Google Scholar]
  • Y. Gerchak, On the viability of partial inventory pooling. Int. J. Inventory Res. 4 (2017) 44–60. [CrossRef] [Google Scholar]
  • Y. Gerchak and D. Mossman, On the effect of demand randomness on inventories and costs. Oper. Res. 40 (1992) 804–807. [CrossRef] [Google Scholar]
  • Y. Zhong, Z. Zheng, M.C. Chou and C.-P. Teo, Resource pooling and allocation policies to deliver differentiated service. Manage. Sci. 64 (2018) 1555–1573. [CrossRef] [Google Scholar]
  • L. Silbermayr and Y. Gerchak, Partial pooling by independent firms with allocation according to contribution to pool. Int. J. Prod. Econ. 218 (2019) 375–385. [CrossRef] [Google Scholar]
  • H. Yang and L. Schrage, Conditions that cause risk pooling to increase inventory. Eur. J. Oper. Res. 192 (2009) 837–851. [CrossRef] [Google Scholar]
  • R. Bhatnagar and B. Lin, The joint transshipment and production control policies for multi-location production/inventory systems. Eur. J. Operat. Res. 275 (2019) 957–970. [CrossRef] [Google Scholar]
  • A. Aflaki and R. Swinney, Inventory integration with rational consumers. Oper. Res. 69 (2021) 1025–1043. [CrossRef] [MathSciNet] [Google Scholar]
  • R.H. Coase, Durability and monopoly. J. Law Econ. 15 (1972) 143–149. [CrossRef] [Google Scholar]
  • X. Su and F. Zhang, Strategic customer behavior, commitment, and supply chain performance. Manage. Sci. 54 (2008) 1759–1773. [Google Scholar]
  • T. Levina, Y. Levin, J. McGill and M. Nediak, Dynamic pricing with online learning and strategic consumers: an application of the aggregating algorithm. Oper. Res. 57 (2009) 327–341. [CrossRef] [Google Scholar]
  • S. Wu, Q. Liu and R.Q. Zhang, The reference effects on a retailer’s dynamic pricing and inventory strategies with strategic consumers. Oper. Res. 63 (2015) 1320–1335. [CrossRef] [MathSciNet] [Google Scholar]
  • X. Chen and Z. Wang, Bayesian dynamic learning and pricing with strategic customers. SSRN Electron. J. (2016). DOI: 10.2139/ssrn.2715730. [Google Scholar]
  • T. Huang, C. Liang and J. Wang, The value of “Bespoke”: demand learning, preference learning, and customer behavior. Manage. Sci. 64 (2018) 3129–3145. [CrossRef] [Google Scholar]
  • Y. Aviv, M.M. Wei and F. Zhang, Responsive pricing of fashion products: the effects of demand learning and strategic consumer behavior. Manage. Sci. 65 (2019) 2982–3000. [CrossRef] [Google Scholar]
  • J. Dong and D.D. Wu, Two-period pricing and quick response with strategic customers. Int. J. Prod. Econ. 215 (2019) 165–173. [Google Scholar]
  • Y. Huang and Z. Wang, Pricing and production decisions in a closed-loop supply chain considering strategic consumers and technology licensing. Int. J. Prod. Res. 57 (2019) 2847–2866. [CrossRef] [Google Scholar]
  • W. Peng, Z. Tian and Y. Wang, Price guarantee for advance selling in the presence of preorder-dependent social learning. Int. J. Prod. Econ. 219 (2020) 115–122. [CrossRef] [Google Scholar]
  • D. Yu, M. Wan and C. Luo, Dynamic pricing and dual-channel choice in the presence of strategic consumers. Manag. Decis. Econ. 1 (2022) 1–17. [Google Scholar]
  • Q. Liu and G.J. van Ryzin, Strategic capacity rationing to induce early purchases. Manage. Sci. 54 (2008) 1115–1131. [CrossRef] [MathSciNet] [Google Scholar]
  • X. Zhao and K.E. Stecke, Pre-orders for new To-be-released products considering consumer loss aversion. Prod. Oper. Manag. 19 (2010) 198–215. [CrossRef] [Google Scholar]
  • A. Prasad, K.E. Stecke and X. Zhao, Advance selling by a newsvendor retailer. Prod. Oper. Manag. 20 (2011) 129–142. [CrossRef] [Google Scholar]
  • M.M. Wei and F. Zhang, Advance selling to strategic consumers: pre-order contingent production strategy with advance selling target. Prod. Oper. Manag. 27 (2018) 1221–1235. [CrossRef] [Google Scholar]
  • M.S. Altug and T. Aydinliyim, Counteracting strategic purchase deferrals: the impact of online retailers’ return policy decisions. M&SOM-Manuf. Serv. Oper. 18 (2016) 376–392. [CrossRef] [Google Scholar]
  • P. Courty and J. Nasiry, Product launches and buying frenzies: a dynamic perspective. Prod. Oper. Manag. 25 (2016) 143–152. [CrossRef] [Google Scholar]
  • Y. Zhang, B. Mantin and Y. Wu, Inventory decisions in the presence of strategic customers: theory and behavioral evidence. Prod. Oper. Manag. 28 (2019) 374–392. [CrossRef] [Google Scholar]
  • R. Cui, D.J. Zhang and A. Bassamboo, Learning from inventory availability information: evidence from field experiments on amazon. Manage. Sci. 65 (2019) 1216–1235. [CrossRef] [Google Scholar]
  • X.T. Wang, P. Ma and Y.L. Zhang, Pricing and inventory strategies under quick response with strategic and myopic consumers. Int. T. Oper. Res. 27 (2020) 1729–1750. [CrossRef] [Google Scholar]
  • G.P. Cachon and R. Swinney, The value of fast fashion: quick response, enhanced design, and strategic consumer behavior. Manage. Sci. 57 (2011) 778–795. [CrossRef] [Google Scholar]
  • M.E. Schweitzer and G.P. Cachon, Decision bias in the newsvendor problem with a known demand distribution: experimental evidence. Manage. Sci. 46 (2000) 404–420. [Google Scholar]
  • X. Su, Bounded rationality in newsvendor models. M&SOM-Manuf. Serv. Oper. 10 (2008) 566–589. [CrossRef] [Google Scholar]
  • S. Zhou, H. Zhang, N. Shi, Z. Xu and F. Wang, A new convergent hybrid learning algorithm for two-stage stochastic programs. Eur. J. Oper. Res. 283 (2020) 33–46. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.