Open Access
Issue
RAIRO-Oper. Res.
Volume 56, Number 6, November-December 2022
Page(s) 3955 - 3971
DOI https://doi.org/10.1051/ro/2022192
Published online 25 November 2022
  • M. Achache, A new primal-dual path-following method for convex quadratic programming. Comput. Appl. Math. 25 (2006) 97–110. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Achache and L. Guerra, A full Nesterov-Todd-step feasible primal-dual interior point algorithm for convex quadratic semi-definite optimization. Appl. Math. Comput. 231 (2014) 581–590. [MathSciNet] [Google Scholar]
  • F. Alizadeh, Interior point methods in semidefinite programming with applications to combinatorial optimization. SIAM J. Optim. 5 (1995) 13–51. [Google Scholar]
  • Z. Darvay, New interior-point algorithms in linear optimization. Adv. Model. Optim. 5 (2003) 51–92. [MathSciNet] [Google Scholar]
  • Z. Darvay and P.R. Takács, New method for determining search directions for interior-point algorithms in linear optimization. Optim. Lett. 12 (2018) 1099–1116. [CrossRef] [MathSciNet] [Google Scholar]
  • Zs Darvay, I.M. Papp and P.R. Takács, Complexity analysis of a full-Newton step interior-point method for linear optimization. Period. Math. Hung. 73 (2016) 27–42. [CrossRef] [Google Scholar]
  • E. de Klerk, Aspects of Semidefinite Programming: Interior Point Algorithms and Selected Applications. Kluwer Academic Publishers, Dordrecht, The Netherlands (2002). [CrossRef] [Google Scholar]
  • M. Halicka, E. De Klerk and C. Roos, On the convergence of the central path in semidefinite optimization. SIAM J. Optim. 12 (2002) 1090–1099. [CrossRef] [MathSciNet] [Google Scholar]
  • G. Gu, M. Zangiabadi and C. Roos, Full Nesterov-Todd step infeasible interior- point method for symmetric optimization. Eur. J. Oper. Res. 214 (2011) 473–484. [CrossRef] [Google Scholar]
  • L. Guerra and M. Achache, A parametric kernel function generating the best known iteration bound for large-update methods for CQSDO. Stat. Optim. Inf. Comput. 8 (2020) 876–889. [CrossRef] [MathSciNet] [Google Scholar]
  • B. Kheirfam, New complexity analysis of a full Nesterov-Todd step interior-point method for semidefinite optimization. Asian-Eur. J. Math. 3 (2017) 1750070. [CrossRef] [MathSciNet] [Google Scholar]
  • B. Kheirfam and A. Nasrollahi, An extension for identifying search directions for interior-point methods in linear optimization. Asian-Eur. J. Math. 1 (2020) 2050014. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Kojima, S. Shindoh and S. Hara, Interior-point methods for the monotone semidefinite linear complementarity problem in symmetric matrices. SIAM J. Optim. 7 (1997) 86–125. [CrossRef] [MathSciNet] [Google Scholar]
  • H. Mansouri and C. Roos, A new full Newton-step O(n) infeasible interior-point algorithm for semidefinite optimization. Numer. Algorithms 52 (2009) 225–255. [CrossRef] [MathSciNet] [Google Scholar]
  • Y.E. Nesterov and A.S. Nemirovskii, Interior-Point Polynomial Algorithms in Convex Programming. SIAM, Philadelphia, PA (1994). [CrossRef] [Google Scholar]
  • C. Roos, T. Terlaky and J.Ph. Vial, Theory and algorithms for linear optimization. An interior point approach. John-Wiley, Sons, Chichester, UK (1997). [Google Scholar]
  • M.J. Todd, K.C. Toh and R.H. Tütüncü, On the Nesterov-Todd direction in semidefinite programming. SIAM J. Optim. 8 (1998) 769–796. [CrossRef] [MathSciNet] [Google Scholar]
  • G.Q. Wang and Y.Q. Bai, A new primal-dual path-following interior point algorithm for semidefinite programming. J. Math. Anal. Appl. 353 (2009) 339–349. [CrossRef] [MathSciNet] [Google Scholar]
  • G.Q. Wang and Y.Q. Bai, A primal-dual path-following interior-point algorithm for second-order cone optimization with full Nesterov-Todd step. Appl. Math. Comput. 215 (2009) 1047–1061. [MathSciNet] [Google Scholar]
  • G.Q. Wang and Y.Q. Bai, A new full Nesterov-Todd step primal-dual path-following interior-point algorithm for symmetric optimization. J. Optim. Theory Appl. 154 (2012) 966–985. [CrossRef] [MathSciNet] [Google Scholar]
  • H. Wolkowicz, R. Saigal and L. Vandenberghe, Handbook of Semidefinite Programming, Theory, Algorithms, and Applications. Kluwer Academic Publishers, Dordrecht, The Netherlands (2000). [CrossRef] [Google Scholar]
  • M. Zangiabadi, G. Gu and C. Roos, Full Nesterov-Todd step primal-dual interior- point mathods for second-order cone optimization. J. Optim. Theory Appl. 158 (2013) 816–858. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.