Open Access
RAIRO-Oper. Res.
Volume 56, Number 6, November-December 2022
Page(s) 4181 - 4189
Published online 13 December 2022
  • M.I. Abdulmaged, On some generalization of convex sets, convex functions, and convex optimization problems. M.Sc. thesis, , Department of Mathematics, College of Education Ibn AL-Haitham, University of Baghdad, Iraq (2018). [Google Scholar]
  • A. Fernandez and M. Pshtiwan, Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels. Math. Methods Appl. Sci. 44 (2021) 8431–8414. [Google Scholar]
  • A. Iqbal and I. Ahmad, Strong geodesic convex functions of order m. Numer. Funct. Anal. Optim. 40 (2019) 1840–1846. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Iqbal, S. Ali and I. Ahmad, On geodesic E-convex sets, geodesic E-convex functions and E-epigraphs. J. Optim. Theory Appl. 55 (2012) 239–251. [CrossRef] [MathSciNet] [Google Scholar]
  • J.B. Jian, On (E, F) generalized convexity. Int. J. Math. Sci. 2 (2003) 121–132. [MathSciNet] [Google Scholar]
  • J.B. Jian, Incorrect results for E-convex functions and E-convex programming. Math. Res. Exposition 23 (2003) 461–466. [MathSciNet] [Google Scholar]
  • A. Kashuri, R.P. Agarwal, P.O. Mohammed, K. Nonlaopon, K.M. Abualnaja and Y.S. Hamed, New generalized class of convex functions and some related integral inequalities. Symmetry 14 (2022) 722. [CrossRef] [Google Scholar]
  • A. Klçman and W. Saleh, On geodesic strongly E-convex sets and geodesic strongly E-convex functions. J. Inequalities App. 2015 (2015) 1–10. [CrossRef] [Google Scholar]
  • S.N. Majeed, On strongly E-convex sets and strongly E-convex cone sets. J. AL-Qadisiyah Comput. Sci. Math. 11 (2019) 52–59. [Google Scholar]
  • S.N. Majeed and M.I. Abd Al-Majeed, On convex functions, E-convex functions and their generalizations: applications to non-linear optimization problems. Int. J. Pure Appl. Math. 116 (2017) 655–673. [Google Scholar]
  • T. Rapcsák, Smooth Nonlinear Optimization in ℝn. Vol. 19. Springer Science and Business Media (2013). [Google Scholar]
  • S.K. Sahoo, R.P. Agarwal, P.O. Mohammed, B. Kodamasingh, K. Nonlaopon and K.M. Abualnaja, Hadamard-Mercer, Dragomir–Agarwal–Mercer, and Pachpatte-Mercer type fractional inclusions for convex functions with an exponential kernel and their applications. Symmetry 14 (2022) 836. [CrossRef] [Google Scholar]
  • W. Saleh, Some properties of geodesic strongly Eb-vex functions. Int. J. Anal. App. 17 (2019) 388–395. [Google Scholar]
  • W. Saleh, On some characterizations of (s, E)-convex functions in the fourth sense. J. Contemporary Appl. Math. 12 (2022) 1–30. [Google Scholar]
  • M.Z. Sarikaya and K. Ozcelik, On Hermite-Hadamard type integral inequalities for strongly Φh-convex functions. Preprint arXiv:1206-3141 (2012). [Google Scholar]
  • A.A. Shaikh, A. Iqbal and C.K. Mondal, Some results on φ-convex functions and geodesic φ-convex functions. Differ. Geom.-Dyn. Syst. 20 (2018) 159–169. [MathSciNet] [Google Scholar]
  • M. Soleimani-damaneh, E-convexity and its generalizations. Int. J. Comput. Math. 88 (2011) 3335–3349. [CrossRef] [MathSciNet] [Google Scholar]
  • H.M. Srivastava, S.K. Sahoo, P.O. Mohammed, D. Baleanu and B. Kodamasingh, Hermite-Hadamard type inequalities for interval-valued preinvex functions via fractional integral operators. Int. J. Comput. Intell. Syst. 15 (2022) 1–12. [CrossRef] [Google Scholar]
  • S.K. Suneja, C.S. Lalitha and M.G. Govil, E-convex and related functions. Int. J. Manage. Syst. 102 (2002) 439–450. [Google Scholar]
  • Y.R. Syau and E.S. Lee, Some properties of E-convex functions. Appl. Math. Lett. 18 (2005) 1074–1080. [CrossRef] [MathSciNet] [Google Scholar]
  • C. Udrist, Convex Funcions and Optimization Methods on Riemannian Manifolds. Kluwer Academic (1994). [CrossRef] [Google Scholar]
  • E.A. Youness, E-convex sets, E-convex functions, and E-convex programming. J. Optim. Theory App. 102 (1999) 439–450. [CrossRef] [Google Scholar]
  • S. Yu, P.O. Mohammed, L. Xu and T. Du, An improvement of the power-mean integral inequality in the frame of fractal space and certain related midpoint-type integral inequalities. FRACTALS (fractals) 30 (2022) 1–23. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.