Open Access
RAIRO-Oper. Res.
Volume 57, Number 2, March-April 2023
Page(s) 541 - 550
Published online 27 March 2023
  • N. Andrei, An unconstrained optimization test functions collection. Adv. Model. Optim. 10 (2008) 147–161. [MathSciNet] [Google Scholar]
  • Y.H. Dai and C.X. Kou, A nonlinear conjugate gradient algorithm with an optimal property and an improved Wolfe line search. SIAM J. Optim. 23 (2013) 296–230. [CrossRef] [MathSciNet] [Google Scholar]
  • Y.H. Dai and L.Z. Liao, New conjugacy conditions and related nonlinear conjugate gradient methods. Appl. Math. Optim. 43 (2001) 87–101. [Google Scholar]
  • Y.H. Dai and Y. Yuan, A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 10 (1999) 177–182. [CrossRef] [MathSciNet] [Google Scholar]
  • E.D. Dolan and J.J. Moré, Benchmarking optimization software with performance profiles. Math. Program. 91 (2002) 201–213. [Google Scholar]
  • R. Fletcher and C.M. Reeves, Function minimization by conjugate gradients. Comput. J. 7 (1964) 149–154. [Google Scholar]
  • J.C. Gilbert and J. Nocedal, Global convergence properties of conjugate gradient methods for optimization. SIAM J. Optim. 2 (1992) 21–42. [Google Scholar]
  • N.I.M. Gould, D. Orban and PhL Toint, CUTEr: a constrained and unconstrained testing environment. ACM Trans. Math. Softw. 29 (2003) 373–394. [CrossRef] [Google Scholar]
  • W.W. Hager and H.C. Zhang, A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J. Optim. 16 (2005) 170–192. [CrossRef] [Google Scholar]
  • W.W. Hager and H.C. Zhang, A survey of nonlinear conjugate gradient methods. Pacific J. Optim. 2 (2006) 35–58. [MathSciNet] [Google Scholar]
  • M.R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Stand. 49 (1952) 409–436. [CrossRef] [Google Scholar]
  • Z.X. Liu, H.W. Liu and Y.H. Dai, An improved Dai-Kou conjugate gradient algorithm for unconstrained optimization. Comput. Optim. Appl. 75 (2020) 145–167. [CrossRef] [MathSciNet] [Google Scholar]
  • E. Polak and G. Ribiére, Note sur la convergence de methods de directions conjugees. Rev. Franc. Inf. Recher. Opié. 16 (1969) 35–43. [Google Scholar]
  • B.T. Polyak, The conjugate gradient method in extremal problems. U.S.S.R Comput. Math. Math. Phys. 9 (1969) 94–112. [CrossRef] [Google Scholar]
  • M.J.D. Powell, Non convex minimization calculations and the conjugate gradient method, in Numerical Analysis. Lecture Notes in Mathematics, edited by D.F. Griffiths. Vol. 1066. Springer, Berlin (1984) 122–141. [CrossRef] [Google Scholar]
  • S.W. Yao, D.L. He and L.H. Shi, An improved Perry conjugate gradient method with adaptive parameter choice. Numer. Algorithms 78 (2018) 1255–1269. [CrossRef] [MathSciNet] [Google Scholar]
  • G.L. Yuan, X.L. Wang and Z. Sheng, Family weak conjugate gradient algorithms and their convergence analysis for nonconvex functions. Numer. Algorithms 84 (2020) 935–956. [CrossRef] [MathSciNet] [Google Scholar]
  • G.L. Yuan, J.G. Lu and Z. Wang, The modified PRP conjugate gradient algorithm under a non-descent line search and its application in the Muskingum model and image restoration problems. Soft Comput. 25 (2021) 5867–5879. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.