Open Access
Issue
RAIRO-Oper. Res.
Volume 57, Number 3, May-June 2023
Page(s) 1027 - 1044
DOI https://doi.org/10.1051/ro/2023040
Published online 11 May 2023
  • F. Akbari, M. Ghaznavi and E. Khorram. A revised Pascoletti Serafini scalarization method for multiobjective optimization problems. J. Optim. Theory Appl. 178 (2018) 560–590. [CrossRef] [MathSciNet] [Google Scholar]
  • H. Benson, An improved definition of proper efficiency for vector maximization with respect to cones. J. Optim. Theory Appl. 71 (1979) 232–241. [Google Scholar]
  • J. Borwein, Proper efficient points for maximization with respect to cones. SIAM J. Control Optim. 15 (1977) 57–63. [CrossRef] [MathSciNet] [Google Scholar]
  • R.S. Burachik, C.Y. Kaya and M.M. Rizvi, A new scalarization technique to approximate Pareto fronts of problems with disconnected feasible sets. J. Optim. Theory Appl. 162 (2014) 428–446. [CrossRef] [MathSciNet] [Google Scholar]
  • R.S. Burachik, C.Y. Kaya and M.M. Rizvi, A new scalarization technique and new algorithms to generate Pareto fronts. SIAM J. Optim. 27 (2017) 1010–1034. [CrossRef] [MathSciNet] [Google Scholar]
  • G. Cabrera, M. Ehrgott, A. Mason and A. Philpott, Multi-objective optimisation of positively homogeneous functions and an application in radiation therapy. Oper. Res. Lett. 2014 (2014) 268–272. [CrossRef] [MathSciNet] [Google Scholar]
  • V. Chankong and Y.Y. Haimes, Multiobjective Decision Making: Theory and Methodology. Elsevier Science Publishing Company, New York, NY (1983). [Google Scholar]
  • I. Das and J.E. Dennis, Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optim. 8 (1998) 631–657. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Ehrgott, Multicriteria Optimization. Vol. 491. Springer, Berlin, Heidelberg (2005). [Google Scholar]
  • M. Ehrgott and S. Ruzika, Improved ε-constraint method for multiobjective programming. J. Optim. Theory Appl. 138 (2008) 375–396. [CrossRef] [MathSciNet] [Google Scholar]
  • G. Eichfelder, Adaptive Scalarization Methods in Multiobjective Optimization. Springer, Berlin (2008). [CrossRef] [Google Scholar]
  • G. Eichfelder, Scalarizations for adaptively solving multi-objective optimization problems. Comput. Optim. Appl. 44 (2009) 249–273. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Engau, Definition and characterization of Geoffrion proper efficiency for real vector optimization with infinitely many criteria. J. Optim. Theory Appl. 165 (2015) 439–457. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Gass and T. Saaty, The computational algorithm for the parametric objective function. Nav. Res. Logist. Q. 2 (1955) 39–45. [CrossRef] [Google Scholar]
  • A.M. Geoffrion, Proper efficiency and the theory of vector maximization. J. Math. Anal. Appl. 22 (1968) 618–630. [Google Scholar]
  • M. Ghaznavi, F. Akbari and E. Khorram, Optimality conditions via a unified direction approach for (approximate) efficiency in multiobjective optimization. Optim. Methods Softw. 36 (2021) 627–652. [CrossRef] [MathSciNet] [Google Scholar]
  • I. Ginchev, A. Guerraggio and M. Rocca, Geoffrion type characterization of higher-order proper efficient points in vector optimization. J. Math. Anal. Appl. 16 (1984) 113–127. [Google Scholar]
  • T. Goel, R. Vaidyanathan, R.T. Haftka, W. Shyy, N.V. Queipo and K. Tucker, Response surface approximation of Pareto optimal front in multi-objective optimization. Comput. Methods Appl. Mech. Eng. 196 (2007) 879–893. [CrossRef] [Google Scholar]
  • N. Hoseinpoor and M. Ghaznavi, The modified objective-constraint scalarization approach for multiobjective optimization problems. Hacet. J. Math. Stat. 51 (2022) 1403–1418. [CrossRef] [MathSciNet] [Google Scholar]
  • D. Kaur, S. Mukherjee and K. Basu, Solution of a multi-objective and multi-index real-life transportation problem using different fuzzy membership functions. J. Optim. Theory Appl. 164 (2015) 666–678. [CrossRef] [MathSciNet] [Google Scholar]
  • K. Khaledian, E. Khorram and M. Soleimani-Damaneh, Strongly proper efficient solutions: efficient solutions with bounded trade-offs. J. Optim. Theory Appl. 168 (2016) 864–883. [CrossRef] [MathSciNet] [Google Scholar]
  • I.Y. Kim and O.L. De Weck, Adaptive weighted sum method for multiobjective optimization: a new method for Pareto front generation. Struct. Multidiscipl. Optim. 31 (2006) 105–116. [CrossRef] [Google Scholar]
  • R.T. Marler and J.S. Arora, Survey of multi-objective optimization methods for engineering. Struct. Multidiscipl. Optim. 26 (2004) 369–395. [CrossRef] [Google Scholar]
  • A. Pascoletti and P. Serafini, Scalarizing vector optimization problems. J. Optim. Theory Appl. 42 (1984) 499–524. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Shahbeyk and M. Soleimani-Damaneh, Proper minimal points of nonconvex sets in Banach spaces in terms of the limiting normal cone. Optimization 66 (2017) 473–489. [CrossRef] [MathSciNet] [Google Scholar]
  • K. Smimou, International portfolio choice and political instability risk: a multiobjective approach. Eur. J. Oper. Res. 234 (2014) 546–560. [CrossRef] [Google Scholar]
  • R. Statnikov, J. Matusov and A. Statnikov, Multicriteria engineering optimization problems: statement, solution and applications. J. Optim. Theory Appl. 155 (2012) 355–375. [CrossRef] [MathSciNet] [Google Scholar]
  • L. Sun, G.W. DePuy and G.W. Evans, Multi-objective optimization models for patient allocation during a pandemic influenza outbreak. Comput. Oper. Res. 51 (2014) 350–359. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Yu, S. Zheng, S. Gao and J. Yang, A multi-objective decision model for investment in energy savings and emission reductions in coal mining. Eur. J. Oper. Res. 260 (2017) 335–347. [CrossRef] [Google Scholar]
  • L. Zadeh, Optimality and non-scalar-valued performance criteria. IEEE Trans. Automat. Control. 8 (1963) 59–60. [CrossRef] [Google Scholar]
  • M. Zamania and M. Soleimani-Damaneh, Proper efficiency, scalarization and transformation in multi-objective optimization: unified approaches. Optimization 71 (2022) 753–774. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Zarepisheh and P.M. Pardalos, An equivalent transformation of multi-objective optimization problems. Ann. Oper. Res. 249 (2017) 5–15. [CrossRef] [MathSciNet] [Google Scholar]
  • H. Zhang and G. Zhao, CMEOC-An expert system in the coal mining industry. Expert Syst. Appl. 16 (1999) 73–77. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.