RAIRO-Oper. Res.
Volume 57, Number 3, May-June 2023
Graphs, Combinatorics, Algorithms and Optimization
Page(s) 1045 - 1058
Published online 11 May 2023
  • V. Bafna and P.A. Pevzner, Genome rearrangements and sorting by reversals. SIAM J. Comput. 25 (1996) 272–289. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Bergeron, J. Mixtacki and J. Stoye, A unifying view of genome rearrangements, in Proc. of WABI. Vol. 4175 of LNBI Springer Berlin Heidelberg (2006) 163–173. [Google Scholar]
  • A. Caprara, The reversal median problem. INFORMS J. Comput. 15 (2003) 93–113. [CrossRef] [MathSciNet] [Google Scholar]
  • D. Doerr, M. Balaban, P. Feijão and C. Chauve, The gene family-free median of three. Algorithm Mol. Biol. 12 (2017) 1–14. [CrossRef] [Google Scholar]
  • P. Feijão and J. Meidanis, SCJ: a breakpoint-like distance that simplifies several rearrangement problems. IEEE/ACM Trans. Comput. Biol. Bioinf. 8 (2011) 1318–1329. [CrossRef] [PubMed] [Google Scholar]
  • G. Fertin, A. Labarre, I. Rusu, E. Tannier and S. Vialette, Combinatorics of Genomes Rearrangements. The MIT Press (2009). [CrossRef] [Google Scholar]
  • S. Hannenhalli and P. Pevzner, Transforming men into mice (polynomial algorithm for genomic distance problem), in Proc. of FOCS 1995. IEEE (1995) 581–592. [Google Scholar]
  • G. Jean and M. Nikolski, Genome rearrangements: a correct algorithm for optimal capping. Inf. Process. Lett. 104 (2007) 14–20. [CrossRef] [Google Scholar]
  • J. Kováč, On the complexity of rearrangement problems under the breakpoint distance. J. Comput. Biol. 21 (2013) 1–15. [Google Scholar]
  • E. Tannier, C. Zheng and D. Sankoff, Multi-chromosomal median and halving problems under different genomic distances. BMC Bioinf. 10 (2009) 1–15. [CrossRef] [Google Scholar]
  • A.W. Xu, DCJ median problems on linear multichromosomal genomes: graph representation and fast exact solutions, in Proc. of RECOMB-CG. Vol. 5817 of LNCS. Springer Berlin Heidelberg (2009) 70–83. [Google Scholar]
  • A.W. Xu, A fast and exact algorithm for the median of three problem: a graph decomposition approach. J. Comput. Biol. 16 (2009) 1369–1381. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • A.W. Xu and D. Sankoff, Decompositions of multiple breakpoint graphs and rapid exact solutions to the median problem, in Proc. of WABI. Vol. 5251 of LNBI. Springer (2008) 25–37. [Google Scholar]
  • S. Yancopoulos, O. Attie and R. Friedberg, Efficient sorting of genomic permutations by translocation, inversion and block interchanges. Bioinformatics 21 (2005) 3340–3346. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.