Open Access
RAIRO-Oper. Res.
Volume 57, Number 3, May-June 2023
Page(s) 1307 - 1328
Published online 14 June 2023
  • A.Y. Adhami and F. Ahmad, Interactive Pythagorean-hesitant fuzzy computational algorithm for multiobjective transportation problem under uncertainty. Int. J. Manag. Sci. Eng. Manag. 15 (2020) 288–297. [Google Scholar]
  • A.Y. Adhami, S.M. Muneeb and M.A. Nomani, A multi-level decision making model for the supplier selection problem in a fuzzy situation. Oper. Res. Decis. 27 (2017) 5–26. [Google Scholar]
  • F. Ahmad, Robust neutrosophic programming approach for solving intuitionistic fuzzy multiobjective optimization problems. Complex Intell. Syst. 7 (2021) 1935–1954. [CrossRef] [Google Scholar]
  • F. Ahmad, Interactive neutrosophic optimization technique for multiobjective programming problems: an application to pharmaceutical supply chain management. Ann. Oper. Res. 311 (2022) 551–585. [CrossRef] [MathSciNet] [Google Scholar]
  • F. Ahmad and B. John, A fuzzy quantitative model for assessing the performance of pharmaceutical supply chain under uncertainty. Kybernetes 52 (2021) 828–873. [Google Scholar]
  • F. Ahmad, A.Y. Adhami, B. John and A. Reza, A novel approach for the solution of multiobjective optimization problem using hesitant fuzzy aggregation operator. RAIRO: OR 56 (2022) 275–292. [CrossRef] [EDP Sciences] [Google Scholar]
  • F. Ahmad, S. Ahmad and M. Zaindin, Sustainable production and waste management policies for COVID-19 medical equipment under uncertainty: a case study analysis. Comput. Ind. Eng. 157 (2021) 107381. [CrossRef] [Google Scholar]
  • F. Ahmad, S. Ahmad, A.T. Soliman and M. Abdollahian, Solving multi-level multiobjective fractional programming problem with rough interval parameter in neutrosophic environment. RAIRO: OR 55 (2021) 2567–2581. [CrossRef] [EDP Sciences] [Google Scholar]
  • F. Ahmad, K.A. Alnowibet, A.F. Alrasheedi and A.Y. Adhami, A multi-objective model for optimizing the socio-economic performance of a pharmaceutical supply chain. Socio-Econ. Plan. Sci. 79 (2022) 101126. [CrossRef] [Google Scholar]
  • S. Ahmad, F. Ahmad and M. Sharaf, Supplier selection problem with type-2 fuzzy parameters: a neutrosophic optimization approach. Int. J. Fuzzy Syst. 23 (2021) 755–775. [CrossRef] [Google Scholar]
  • P.P. Angelov, Optimization in an intuitionistic fuzzy environment. Fuzzy Sets Syst. 86 (1997) 299–306. [CrossRef] [Google Scholar]
  • S. Aouadni, I. Aouadni and A. Reba, A systematic review on supplier selection and order allocation problems. J. Ind. Eng. Int. 15 (2019) 267–289. [CrossRef] [Google Scholar]
  • K.T. Atanassov, Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20 (1986) 87–96. [Google Scholar]
  • I.A. Baky, Fuzzy goal programming algorithm for solving decentralized bi-level multiobjective programming problems. Fuzzy Sets Syst. 160 (2009) 2701–2713. [CrossRef] [Google Scholar]
  • H. Barman, M. Pervin and S.K. Roy, Impacts of green and preservation technology investments on a sustainable EPQ model during the COVID-19 pandemic. RAIRO: OR 56 (2022) 2245–2275. [CrossRef] [EDP Sciences] [Google Scholar]
  • R.E. Bellman and L.A. Zadeh, Decision-making in a fuzzy environment. Manag. Sci. 170 (1970) 141–164. [Google Scholar]
  • S.K. Bharti and S.R. Singh, Solution of multi-objective linear programming problems in interval valued intuitionistic fuzzy environment. Soft. Comput. 23 (2019) 77–84. [CrossRef] [Google Scholar]
  • L.E. Cardenas-Barron, J.E. Gonzalez-Velarde and G. Trevino-Garza, A new approach to solve the multi-product multi-period inventory lot sizing with supplier selection problem. Comput. Oper. 64 (2015) 225–232. [CrossRef] [Google Scholar]
  • D. Chakraborty, D.K. Jana and T.K. Roy, A new approach to solve multi-objective multi-choice multi-item Atanassov’s intuitionistic fuzzy transportation problem using chance operator. J. Intell. Fuzzy Syst. 28 (2015) 843–865. [CrossRef] [Google Scholar]
  • D. Choudhary and R. Shankar, A goal programming model for joint decision making of inventory lot-size, supplier selection and carrier selection. Comput. Ind. Eng. 71 (2014) 1–9. [Google Scholar]
  • Y. Crama, J.R. Pascual and A. Torres, Optimal procurement decisions in the presence of total quantity discounts and alternative product recipes. Eur. J. Oper. Res. 159 (2004) 364–378. [CrossRef] [Google Scholar]
  • S.K. Das and S.K. Roy, Effect of variable carbon emission in a multi-objective transportation-p-facility location problem under neutrosophic environment. Comput. Ind. Eng. 132 (2019) 311–324. [CrossRef] [Google Scholar]
  • D. Pamucar, M. Yazdani, R. Obradovic, A. Kumar and M. Torres-Jiménez, A novel fuzzy hybrid neutrosophic decision-making approach for the resilient supplier selection problem. Int. J. Intell. Syst. 35 (2020) 1934–1986. [CrossRef] [Google Scholar]
  • M.A. El Sayed and M.A. Abo-Sinna, A novel approach for fully intuitionistic fuzzy multi-objective fractional transportation problem. Alex. Eng. J. 60 (2021) 1447–1463. [CrossRef] [Google Scholar]
  • F. Ahmad and A.Y. Adhami, Neutrosophic programming approach to multiobjective nonlinear transportation problem with fuzzy parameters. Int. J. Manag. Sci. Eng. Manag. 14 (2018) 218–229. [Google Scholar]
  • S.H. Ghodsypour and C.O. O’Brien, The total cost of logistics in supplier selection, under conditions of multiple sourcing, multiple criteria and capacity constraint. Int. J. Prod. Econ. 73 (2001) 15–27. [CrossRef] [Google Scholar]
  • S. Ghosh, S.K. Roy and A. Fügenschuh, The multi-objective solid transportation problem with preservation technology using pythagorean fuzzy sets. Int. J. Fuzzy Syst. 24 (2022) 2687–2704. [CrossRef] [Google Scholar]
  • S. Ghosh, S.K. Roy and J.L. Verdegay, Fixed-charge solid transportation problem with budget constraints based on carbon emission in a neutrosophic environment. Soft Comput. 26 (2022) 11611–11625. [CrossRef] [Google Scholar]
  • B.K. Giri and S.K. Roy, Neutrosophic multi-objective green four-dimensional fixed-charge transportation problem. Int. J. Mach. Learn. Cyber. 13 (2022) 3089–3112. [CrossRef] [Google Scholar]
  • A.K. Kar, A hybrid group decision support system for supplier selection using analytic hierarchy process, fuzzy set theory and neural network. J. Comput. Sci. 6 (2015) 23–33. [CrossRef] [Google Scholar]
  • H. Ke, T. Su and Y. Ni, Uncertain random multilevel programming with application to production control problem. Soft Comput. 19 (2015) 1739–1746. [CrossRef] [Google Scholar]
  • M. Kumar, P. Vrat and R. Shankar, A fuzzy goal programming approach for vendor selection problem in a supply chain. Comput. Ind. Eng. 46 (2004) 69–85. [CrossRef] [Google Scholar]
  • P. Kumar, R. Shankar and S.S. Yadav, An integrated approach of analytic hierarchy process and fuzzy linear programming for supplier selection. Int. J. Oper. Res. 3 (2008) 614–631. [CrossRef] [MathSciNet] [Google Scholar]
  • A.H.I. Lee, A fuzzy supplier selection model with the consideration of benefits, opportunities, costs and risks. Expert Syst. Appl. 36 (2009) 2879–2893. [CrossRef] [Google Scholar]
  • G. Maity and S.K. Roy, Solving a multi-objective transportation problem with nonlinear cost and multi-choice demand. Int. J. Manag. Sci. Eng. Manag. 11 (2016) 62–70. [Google Scholar]
  • R. Mansini, M.W.P. Savelsbergh and B. Tocchella, The supplier selection problem with quantity discounts and truckload shipping. Omega 40 (2012) 445–455. [CrossRef] [Google Scholar]
  • D. Mardanya, G. Maity, S.K. Roy and V.F. Yu, Solving the multi-modal transportation problem via the rough interval approach. RAIRO: OR 56 (2022) 3155–3185. [CrossRef] [EDP Sciences] [Google Scholar]
  • A. Migdalas, P.M. Pardalos and P. Vrbrand, Multilevel Optimization: Algorithms and Applications. Kluwer Academic Publicatons (1998). [CrossRef] [Google Scholar]
  • A. Mondal and S.K. Roy, Multi-objective sustainable opened-and closed-loop supply chain under mixed uncertainty during COVID-19 pandemic situation. Comput. Ind. Eng. 159 (2021) 107453. [CrossRef] [Google Scholar]
  • S.M. Muneeb, A.Y. Adhami, S.A. Jalil and Z. Asim, Decentralised bi-level decision planning model for municipal solid waste recycling and management with cost reliability under uncertain environment. Sustain. Prod. Consum. 16 (2018) 33–44. [CrossRef] [Google Scholar]
  • M. Pervin, S.K. Roy and G.W. Weber, Analysis of inventory control model with shortage under time-dependent demand and time-varying holding cost, including stochastic deterioration. Ann. Oper. Res. 260 (2018) 437–460. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Pervin, S.K. Roy and G.W. Weber, An integrated vendor-buyer model with quadratic demand under inspection policy and preservation technology. Hacettepe J. Math. Stat. 49 (2020) 1168–1189. [MathSciNet] [Google Scholar]
  • S. Pramanik, Neutrosophic multi-objective linear programming. Glob. J. Eng. Sci. Res. Manag. 3 (2016) 36–46. [Google Scholar]
  • S. Pramanik, D. Banerjee and B.C. Giri, Multilevel multiobjective linear plus linear fractional programming problem based on FGP approach. Int. J. Innov. Sci. Eng. Technol. 2 (2015) 153–160. [Google Scholar]
  • D. Rani and T.R. Gulati, A new approach to solve unbalanced transportation problems in imprecise environment. J. Transp. Secur. 7 (2014) 277–287. [CrossRef] [Google Scholar]
  • R.M. Rizk-Allaha, A.E. Hassanienb and M. Elhoseny, A multi-objective transportation model under neutrosophic environment. Comput. Elec. Eng. 69 (2018) 705–719. [CrossRef] [Google Scholar]
  • F.A. Smarandache, Unifying field in logics: neutrosophic logic, in Philosophy, American Research Press (APP), Rehoboth, NM, USA (1999) 1–141. [Google Scholar]
  • S.M. Muneeb, M.A. Nomani, M. Masmoudi and A.Y. Adhami, A bi-level decision making approach for the vendor selection problem with random supply and demand. Manag. Decis. 58 (2019) 1164–1189. [CrossRef] [Google Scholar]
  • W. Xia and Z. Wu, Supplier selection with multiple criteria in volume discount environments. Omega 35 (2007) 494–504. [CrossRef] [Google Scholar]
  • J. Xu, L.L. Lu and F. Glover, The deterministic multi-item dynamic lot size problem with joint business volume discount. Ann. Oper. Res. 96 (2000) 317–337. [CrossRef] [Google Scholar]
  • L.A. Zadeh, Fuzzy sets. Inform. Control 8 (1965) 338–353. [CrossRef] [Google Scholar]
  • H.J. Zimmermann, Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst. 1 (1978) 45–55. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.