Open Access
Issue |
RAIRO-Oper. Res.
Volume 57, Number 4, July-August 2023
|
|
---|---|---|
Page(s) | 1785 - 1795 | |
DOI | https://doi.org/10.1051/ro/2023074 | |
Published online | 14 July 2023 |
- M. Blidia, M. Chellali, R. Lounes and F. Maffray, Characterizations of trees with unique minimum locating-dominating sets. J. Combin. Math. Combin. Comput. 76 (2011) 225–232. [MathSciNet] [Google Scholar]
- R. Boutrig, M. Chellali, T.W. Haynes and S.T. Hedetniemi, Vertex-edge domination in graphs. Aequat. Math. 90 (2016) 355–366. [CrossRef] [Google Scholar]
- M. Chellali and T.W. Haynes, Trees with unique minimum paired dominating sets. Ars Combin. 73 (2004) 3–12. [MathSciNet] [Google Scholar]
- M. Chellali and T.W. Haynes, A characterization of trees with unique minimum double dominating sets. Util. Math. 83 (2010) 233–242. [MathSciNet] [Google Scholar]
- L. Chen, C. Lu and Z. Zeng, Graphs with unique minimum paired dominating set. Ars Combin. 119 (2015) 177–192. [MathSciNet] [Google Scholar]
- M. Fischermann, Block graphs with unique minimum dominating set. Discrete Math. 240 (2001) 247–251. [CrossRef] [MathSciNet] [Google Scholar]
- M. Fischermann and L. Volkmann, Unique minimum domination in trees. Aust. J. Combin. 25 (2002) 117–124. [Google Scholar]
- G. Gunther, B. Hartnell, L.R. Markus and D. Rall, Graphs with unique minimum dominating sets. Congr. Numer. 101 (1994) 55–63. [MathSciNet] [Google Scholar]
- T. Haynes and M.A. Henning, Trees with unique minimum total dominating sets. Discuss. Math. Graph Theory 22 (2002) 233–246. [CrossRef] [MathSciNet] [Google Scholar]
- B. Krishnakumari, Y.B. Venkatakrishnan and M. Krzywkowski, Bounds on the vertex-edge domination number of a tree. C. R. Math. 352 (2014) 363–366. [CrossRef] [MathSciNet] [Google Scholar]
- J.R. Lewis, Vertex-edge and edge-vertex domination in graphs. Ph.D. Thesis, Clemson University, Clemson (2007). [Google Scholar]
- J.R. Lewis, S.T. Hedetniemi, T.W. Haynes and G.H. Fricke, Vertex-edge domination. Util. Math. 81 (2010) 193–213. [MathSciNet] [Google Scholar]
- J.W. Peters, Theoretical and algorithmic results on domination and connectivity. Ph.D. thesis, Clemson University, Clemson, SC (1986). [Google Scholar]
- W. Zaho, F. Wang and H. Zang, Construction for trees with unique minimum dominating sets. Int. J. Comput. Math. Comput. Syst. Theory 3 (2018) 204–213. [CrossRef] [MathSciNet] [Google Scholar]
- P. Żyliński, Vertex-edge domination in graphs. Aequat. Math. 93 (2019) 735–742. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.