Open Access
Issue
RAIRO-Oper. Res.
Volume 57, Number 4, July-August 2023
Page(s) 1767 - 1784
DOI https://doi.org/10.1051/ro/2023095
Published online 14 July 2023
  • N. Agrawal and S.A. Smith, Optimal inventory management for a retail chain with diverse store demands. Eur. J. Oper. Res. 225 (2013) 393–403. [CrossRef] [Google Scholar]
  • L. Chen, S. Yücel and K. Zhu, Inventory management in a closed-loop supply chain with advance demand information. Oper. Res. Lett. 45 (2017) 175–180. [CrossRef] [MathSciNet] [Google Scholar]
  • J. Zhang, Z. Bai and W. Tang, Optimal pricing policy for deteriorating items with preservation technology investment. J. Ind. Manag. Optim. 10 (2014) 1261–1277. [CrossRef] [MathSciNet] [Google Scholar]
  • P. Priyamvada, R. Rini and C.K. Jaggi, Optimal inventory strategies for deteriorating items with price-sensitive investment in preservation technology. RAIRO: OR 56 (2022) 601–617. [CrossRef] [EDP Sciences] [Google Scholar]
  • R.H. Teunter and W.K. Klein Haneveld, Dynamic inventory rationing strategies for inventory systems with two demand classes, Poisson demand and backordering. Eur. J. Oper. Res. 190 (2008) 156–178. [CrossRef] [Google Scholar]
  • C. Temponi, M.D. Bryant and B. Fernandez, Integration of business function models into an aggregate enterprise systems model. Eur. J. Oper. Res. 199 (2009) 793–800. [CrossRef] [Google Scholar]
  • M. Gorajski and D. Machowska, The effects of technological shocks in an optimal goodwill model with a random product life cycle. Comput. Math. Appl. 76 (2018) 905–922. [MathSciNet] [Google Scholar]
  • IEC 60050-191, Dependability and Quality of Service – Chapter 19, in International Electrotechnical Vocabulary – Part 191. International Electrotechnical Commission, Geneva (1990) 192. [Google Scholar]
  • I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 5 (2002) 367–386. [MathSciNet] [Google Scholar]
  • K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations. Wiley, New York (1993). [Google Scholar]
  • K. Diethelm, The Analysis of Fractional Differential Equations. Springer, Verlag (2010). [CrossRef] [Google Scholar]
  • M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel. Prog. Frac. Differ. Appl. 1 (2015) 73–85. [Google Scholar]
  • M. Pervin, S.K. Roy and G.W. Weber, Multi-item deteriorating two-echelon inventory model with price- and stock-dependent demand: A trade-credit policy. J. Ind. Manag. Optim. 15 (2019) 1345–1373. [MathSciNet] [Google Scholar]
  • U.K. Khedlekar, D. Shukla, R.P.S. Chandel, Computational study for disrupted production system with time-dependent demand. J. Sci. Ind. Res. 73 (2013) 294–301. [Google Scholar]
  • H.M. Wee, Joint pricing and replenishment policy for deteriorating inventory with a declining market. Int. J. Prod. Res. 40 (1995) 163–171. [Google Scholar]
  • E.B. Tirkolaee, A. Goli and G.W. Weber, Multi-objective aggregate production planning model considering overtime and outsourcing options under fuzzy seasonal demand. Adv. Manuf. (2019) 81–96. [Google Scholar]
  • K.C. Hung, An inventory model with generalized type demand, deterioration, and backorder rates. Eur. J. Oper. Res. 208 (2011) 239–242. [CrossRef] [Google Scholar]
  • S. Pal, G.S. Mahapatra and G.P. Samanta, A production inventory model for deteriorating items with ramp type demand allowing inflation and shortages under fuzziness. Econ. Model. 46 (2015) 334–345. [CrossRef] [Google Scholar]
  • M. Kirci, I. Bicer and R.W. Seifert, Optimal replenishment cycle for perishable items facing demand uncertainty in a two-echelon inventory system. Int. J. Prod. Res. 57 (2019) 1250–1264. [CrossRef] [Google Scholar]
  • G.S. Mahapatra, S. Adak, T.K. Mandal and S. Pal, Inventory model for deteriorating items with time and reliability dependent demand and partial backorder. Int. J. Oper. Res. 29 (2017) 344–359. [CrossRef] [MathSciNet] [Google Scholar]
  • G.S. Mahapatra, S. Adak and K. Kaladhar, A fuzzy inventory model with three parameter Weibull deterioration with reliant holding cost and demand incorporating reliability. J. Intell. Fuzzy Syst. 36 (2019) 5731–5744. [CrossRef] [Google Scholar]
  • A. Kumar, P.K. Santra and G.S. Mahapatra, Fractional order inventory system for time-dependent demand influenced by reliability and memory effect of promotional efforts. Comput. Ind. Eng. 179 (2023) 109191. [CrossRef] [Google Scholar]
  • F. Lolli, E. Balugani, A. Ishizaka, R. Gamberini, B. Rimini and A. Regattieri, Machine learning for multi-criteria inventory classification applied to intermittent demand. Prod. Plan. Control 30 (2019) 76–89. [CrossRef] [Google Scholar]
  • R. Sundararajan, M. Prabha and R. Jaya, An inventory model for non-instantaneous deteriorating items with multivariate demand and backlogging under inflation. J. Manag. Anal. 6 (2019) 302–322. [Google Scholar]
  • H.-M. Wee, S.-T. Lo, J. Yu and H.C. Chen, An inventory model for ameliorating and deteriorating items taking account of time value of money and finite planning horizon. Int. J. Syst. Sci. 39 (2008) 801–807. [CrossRef] [Google Scholar]
  • G.S. Mahapatra, T.K. Mandal and G.P. Samanta, An EPQ model with imprecise space constraint based on intuitionistic fuzzy optimization technique. J. Mult.-Valued Log. Soft Comput. 19 (2012) 409–423. [Google Scholar]
  • G. Maity, S.K. Roy and J.L. Verdegay, Multi-objective transportation problem with cost reliability under uncertain environment. Int. J. Comput. Intell. Syst. 9 (2016) 839–849. [CrossRef] [Google Scholar]
  • R. Billinton and R.N. Allan, Reliability Evaluation of Engineering Systems. Springer, New York, NY (1992). [CrossRef] [Google Scholar]
  • G.D. Bhavani, F.B. Georgise, G.S. Mahapatra and B. Maneckshaw, Neutrosophic cost pattern of inventory system with novel demand incorporating deterioration and discount on defective items using particle swarm algorithm. Comput. Intell. Neurosci. 2022 (2022) 7683417. [CrossRef] [Google Scholar]
  • I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999). [Google Scholar]
  • A. Kilbas, H. Srivastava and J. Trujillo, Theory and Application of Fractional Differential Equations. Elsevier, New York (2006). [Google Scholar]
  • R. Pakhira, U. Ghosh and S. Sarkar, Study of memory effect in an inventory model for deteriorating items with partial backlogging. Comput. Ind. Eng. 148 (2020) 106705. [CrossRef] [Google Scholar]
  • V.E. Tarasov and V.V. Tarasova, Long and short memory in economics: fractional-order difference and differentiation. IRA-Int. J. Manag. Soc. Sci. 5 (2016) 327–334. [Google Scholar]
  • V.E. Tarasov and V.V. Tarasova, Macroeconomic models with long dynamic memory: fractional calculus approach. Appl. Math. Comput. 338 (2018) 466–486. [MathSciNet] [Google Scholar]
  • H.A. Fallahgoul, S.M. Focardi and F.J. Fabozzi, Fractional Calculus and Fractional Processes with Applications to Financial Economics, Theory and Application. Academic Press, London, UK (2016). [Google Scholar]
  • D. Dutta and P. Kumar, Application of fuzzy goal programming approach to multi-objective linear fractional inventory model. Int. J. Syst. Sci. 46 (2015) 2269–2278. [CrossRef] [Google Scholar]
  • M. Kasi Mayan and N. Martin, Eco-conscious customer centric inventory model with fractional order approach. Adv. Math. Sci. J. 9 (2020) 1773–1786. [CrossRef] [Google Scholar]
  • M. Rahaman, S.P. Mondal, A.A. Shaikh, P. Pramanik, S. Roy, M.K. Maiti, R. Mondal and D. De, Artificial bee colony optimization-inspired synergetic study of fractional-order economic production quantity model. Soft Comput. 24 (2020) 15341–15359. [Google Scholar]
  • T. Lei, R.Y.M. Li and H. Fu, Dynamics analysis and fractional-order approximate entropy of nonlinear inventory management systems. Math. Prob. Eng. (2021) 5516703. [Google Scholar]
  • Z. Liu, H. Jahanshahi, J.F. Gómez-Aguilar, G. Fernandez-Anaya, J. Torres-Jiménez, A.A. Aly and A.M. Aljuaid, Fuzzy adaptive control technique for a new fractional-order supply chain system. Phys. Scr. 96 (2021) 124017. [CrossRef] [Google Scholar]
  • M. Caputo and M. Fabrizio, Applications of new time and spatial fractional derivatives with exponential kernels. Prog. Frac. Differ. Appl. 2 (2016) 1–11. [CrossRef] [Google Scholar]
  • E.J. Moore, S. Sirisubtawee and S. Koonprasert, A Caputo–Fabrizio fractional differential equation model for HIV/AIDS with treatment compartment. Adv. Differ. Equ. 2019 (2019) 200. [CrossRef] [Google Scholar]
  • D. Baleanu, A. Jajarmi, H. Mohammadi and S. Rezapour, A new study on the mathematical modelling of human liver with CaputoFabrizio fractional derivative. Chaos Solit. Fractals 134 (2020) 109705. [CrossRef] [Google Scholar]
  • J. Singh, D. Kumar, Z. Hammouch and A. Atangana, A fractional epidemiological model for computer viruses pertaining to a new fractional derivative. Appl. Math. Comput. 316 (2018) 504–515. [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.