Open Access
Issue |
RAIRO-Oper. Res.
Volume 57, Number 4, July-August 2023
|
|
---|---|---|
Page(s) | 1951 - 1956 | |
DOI | https://doi.org/10.1051/ro/2023100 | |
Published online | 24 July 2023 |
- G. Abrishami and M.A. Henning, Independent domination in subcubic graphs of girth at least six. Discrete Math. 341 (2018) 155–164. [CrossRef] [MathSciNet] [Google Scholar]
- C. Brause and M.A. Henning, Independent domination in bipartite cubic graphs. Graphs Combin. 35 (2019) 881–919. [CrossRef] [MathSciNet] [Google Scholar]
- A. Cabrera-Martínez, New bounds on the double domination number of trees. Discrete Appl. Math. 315 (2022) 97–103. [CrossRef] [MathSciNet] [Google Scholar]
- A. Cabrera-Martínez and A. Conchado Peiró, On the 2-domination number of graphs. AIMS Math. 7 (2022) 10731–10743. [CrossRef] [MathSciNet] [Google Scholar]
- M. Chellali and T.W. Haynes, A note on the total domination of a tree. J. Combin. Math. Combin. Comput. 58 (2006) 189–193. [MathSciNet] [Google Scholar]
- W.J. Desormeaux, T.W. Haynes and M.A. Henning, Improved bounds on the domination number of a tree. Discrete Appl. Math. 177 (2014) 88–94. [CrossRef] [MathSciNet] [Google Scholar]
- O. Favaron, A bound on the independent domination number of a tree. Vishwa Int. J. Graph Theory 1 (1992) 19–27. [Google Scholar]
- M.R. Garey and M.R. Johnson, Computers and Intractability. Freeman, New York (1979). [Google Scholar]
- W. Goddard and M.A. Henning, Independent domination in graphs: a survey and recent results. Discrete Appl. Math. 313 (2013) 839–854. [Google Scholar]
- T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs. Marcel Dekker Inc., New York (1998). [Google Scholar]
- T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics. Marcel Dekker Inc., New York (1998). [Google Scholar]
- B. Krishnakumari, Y.B. Venkatakrishnan and M. Krzywkowski, Bounds on the vertex-edge domination number of a tree. C. R. Math. 352 (2014) 363–366. [CrossRef] [MathSciNet] [Google Scholar]
- M. Lemańska, Lower bound on the domination number of a tree. Discuss. Math. Graph Theory 24 (2004) 165–169. [CrossRef] [MathSciNet] [Google Scholar]
- N.J. Rad and L. Volkmann, A note on the independent domination number in graphs. Discrete Appl. Math. 161 (2013) 3087–3089. [CrossRef] [MathSciNet] [Google Scholar]
- O. Suil and D.B. West, Cubic graphs with large ratio of independent domination number to domination number. Graphs Combin. 32 (2016) 773–776. [CrossRef] [MathSciNet] [Google Scholar]
- S. Wang and B. Wei, A note on the independent domination number versus the domination number in bipartite graphs. Czechoslov. Math. J. 67 (2017) 533–536. [CrossRef] [Google Scholar]
- W. Zhuang, Bounds on the disjunctive domination number of a tree. RAIRO: OR 56 (2022) 2389–2401. [CrossRef] [EDP Sciences] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.