Open Access
RAIRO-Oper. Res.
Volume 57, Number 4, July-August 2023
Page(s) 2279 - 2300
Published online 18 September 2023
  • V. Babaveisi, M.M. Paydar and A.S. Safaei, Optimizing a multi-product closed-loop supply chain using nsga-ii, mosa, and mopso meta-heuristic algorithms. J. Ind. Eng. Int. 14 (2018) 305–326. [CrossRef] [Google Scholar]
  • S. Bandyopadhyay and R. Bhattacharya, Solving a tri-objective supply chain problem with modified nsga-ii algorithm. J. Manuf. Syst. 33 (2014) 41–50. [CrossRef] [Google Scholar]
  • A. Barman and P. De, A multi-item deteriorating inventory model under stock level-dependent, time-varying, and price-sensitive demand. In Recent Trends in Applied Mathematics: Select Proceedings of AMSE 2019. Springer (2021) 1–12. [Google Scholar]
  • A. Barman, R. Das, P.K. De and S.S. Sana, Optimal pricing and greening strategy in a competitive green supply chain: Impact of government subsidy and tax policy. Sustainability 13 (2021) 9178. [CrossRef] [Google Scholar]
  • A. Barman, R. Das and P.K. De, An analysis of optimal pricing strategy and inventory scheduling policy for a non-instantaneous deteriorating item in a two-layer supply chain. Appl. Intell. 52 (2022) 4626–4650. [CrossRef] [Google Scholar]
  • A. Barman, R. Das, P.K. De and J.K. Dash, Optimal pricing, ordering, and replenishment policies in a multi-item inventory system for deteriorating items under time-varying backlogging rate. J. Ind. Integr. Manag. 7 (2022) 235–256. [CrossRef] [Google Scholar]
  • L.E. Cárdenas-Barrón, Optimizing inventory decisions in a multi-stage multi-customer supply chain: a note. Transp. Res. Part E: Logist. Transp. Rev. 43 (2007) 647–654. [CrossRef] [Google Scholar]
  • D. Chakraborty, D.K. Jana and T.K. Roy, Two-warehouse partial backlogging inventory model with ramp type demand rate, three-parameter weibull distribution deterioration under inflation and permissible delay in payments. Comput. Ind. Eng. 123 (2018) 157–179. [CrossRef] [Google Scholar]
  • F.T. Chan, A. Jha and M.K. Tiwari, Bi-objective optimization of three echelon supply chain involving truck selection and loading using nsga-ii with heuristics algorithm. Appl. Soft Comput. 38 (2016) 978–987. [CrossRef] [Google Scholar]
  • F. Cheng and F. Ye, A two objective optimisation model for order splitting among parallel suppliers. Int. J. Prod. Res. 49 (2011) 2759–2769. [CrossRef] [Google Scholar]
  • E. Chołodowicz and P. Orłowski, Development of new hybrid discrete-time perishable inventory model based on weibull distribution with time-varying demand using system dynamics approach. Comput. Ind. Eng. 154 (2021) 107151. [CrossRef] [Google Scholar]
  • N.A. Darom, H. Hishamuddin, R. Ramli and Z.M. Nopiah, An inventory model of supply chain disruption recovery with safety stock and carbon emission consideration. J. Clean. Prod. 197 (2018) 1011–1021. [CrossRef] [Google Scholar]
  • R. Das, A. Barman, B. Roy and P.K. De, Pricing and greening strategies in a dual-channel supply chain with cost and profit sharing contracts. Environ. Dev. Sustain. (2022) 1–34. [Google Scholar]
  • K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans. Evol. Comput. 6 (2002) 182–197. [CrossRef] [Google Scholar]
  • A. Debnath and B. Sarkar, Effect of circular economy for waste nullification under a sustainable supply chain management. J. Clean. Prod. 385 (2023) 135477. [CrossRef] [Google Scholar]
  • B.K. Debnath, P. Majumder and U.K. Bera, Two warehouse inventory models of breakable items with stock dependent demand under trade credit policy with respect to both supplier and retailer. Int. J. Logist. Syst. Manag. 31 (2018) 151–166. [Google Scholar]
  • B. Debnath, P. Majumder and U. Bera, Multi-objective sustainable fuzzy economic production quantity (SFEPQ) model with demand as type-2 fuzzy number: A fuzzy differential equation approach. Hacet. J. Math. Stat. 48 (2019) 112–139. [MathSciNet] [Google Scholar]
  • B.K. Debnath, P. Majumder and U.K. Bera, A FEPQ model of sustainable items with time and stock dependent demand under trade credit policy. Int. J. Oper. Res. 41 (2021) 27–52. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Dillon, F. Oliveira and B. Abbasi, A two-stage stochastic programming model for inventory management in the blood supply chain. Int. J. Prod. Econ. 187 (2017) 27–41. [CrossRef] [Google Scholar]
  • Y. Dong and K. Xu, A supply chain model of vendor managed inventory. Transp. Res. Part E: Logist. Transp. Rev. 38 (2002) 75–95. [CrossRef] [Google Scholar]
  • P. Ghare, A model for an exponentially decaying inventory. J. Ind. Eng. 14 (1963) 238–243. [Google Scholar]
  • H. Gholizadeh and H. Fazlollahtabar, Robust optimization and modified genetic algorithm for a closed loop green supply chain under uncertainty: Case study in melting industry. Comput. Ind. Eng. 147 (2020) 106653. [CrossRef] [Google Scholar]
  • M.A. Halim, A. Paul, M. Mahmoud, B. Alshahrani, A.Y. Alazzawi and G.M. Ismail, An overtime production inventory model for deteriorating items with nonlinear price and stock dependent demand. Alex. Eng. J. 60 (2021) 2779–2786. [CrossRef] [Google Scholar]
  • A. Hiassat, A. Diabat and I. Rahwan, A genetic algorithm approach for location-inventory-routing problem with perishable products. J. Manuf. Syst. 42 (2017) 93–103. [CrossRef] [Google Scholar]
  • H. Huang, Y. He and D. Li, Pricing and inventory decisions in the food supply chain with production disruption and controllable deterioration. J. Clean. Prod. 180 (2018) 280–296. [CrossRef] [Google Scholar]
  • Y.-S. Huang, J.-W. Ho, H.-J. Jian and T.-L.B. Tseng, Quantity discount coordination for supply chains with deteriorating inventory. Comput. Ind. Eng. 152 (2021) 106987. [CrossRef] [Google Scholar]
  • K. Kamna, P. Gautam and C.K. Jaggi, Sustainable inventory policy for an imperfect production system with energy usage and volume agility. Int. J. Syst. Assur. Eng. Manag. 12 (2021) 44–52. [CrossRef] [Google Scholar]
  • S.-T. Lo, H.-M. Wee and W.-C. Huang, An integrated production-inventory model with imperfect production processes and weibull distribution deterioration under inflation. Int. J. Prod. Econ. 106 (2007) 248–260. [CrossRef] [Google Scholar]
  • S. Mahata and B.K. Debnath, A profit maximization single item inventory problem considering deterioration during carrying for price dependent demand and preservation technology investment. RAIRO: OR 56 (2022) 1841–1856. [CrossRef] [EDP Sciences] [Google Scholar]
  • A.K. Maiti, A.K. Bhunia and M. Maiti, An application of real-coded genetic algorithm (RCGA) for mixed integer non-linear programming in two-storage multi-item inventory model with discount policy. Applied Mathematics and computation 183 (2006) 903–915. [CrossRef] [MathSciNet] [Google Scholar]
  • M.K. Maitiand M. Maiti, Two-storage inventory model with lot-size dependent fuzzy lead-time under possibility constraints via genetic algorithm. European Journal of Operational Research 179 (2007) 352–371. [CrossRef] [Google Scholar]
  • B.A. Mandal and S. Phaujdar, An inventory model for deteriorating items and stock-dependent consumption rate. J. Oper. Res. Soc. 40 (1989) 483–488. [Google Scholar]
  • A.H.M. Mashud, D. Roy, Y. Daryanto and H.-M. Wee, Joint pricing deteriorating inventory model considering product life cycle and advance payment with a discount facility. RAIRO: OR 55 (2021) S1069–S1088. [CrossRef] [EDP Sciences] [Google Scholar]
  • V.K. Mishra and L. Sahab Singh, Deteriorating inventory model for time dependent demand and holding cost with partial backlogging. Int. J. Manag. Sci. Eng. Manag. 6 (2011) 267–271. [Google Scholar]
  • S.S. Moghadam, A. Aghsami and M. Rabbani, A hybrid nsga-ii algorithm for the closed-loop supply chain network design in e-commerce. RAIRO: OR 55 (2021) 1643. [CrossRef] [EDP Sciences] [Google Scholar]
  • S. Pal, A. Goswami and K. Chaudhuri, A deterministic inventory model for deteriorating items with stock-dependent demand rate. Int. J. Prod. Econ. 32 (1993) 291–299. [CrossRef] [Google Scholar]
  • S. Pal, G. Mahapatra and G. Samanta, A production inventory model for deteriorating item with ramp type demand allowing inflation and shortages under fuzziness. Econ. Model. 46 (2015) 334–345. [CrossRef] [Google Scholar]
  • Y.-B. Park, J.-S. Yoo and H.-S. Park, A genetic algorithm for the vendor-managed inventory routing problem with lost sales. Expert Syst. Appl. 53 (2016) 149–159. [CrossRef] [Google Scholar]
  • F.F. Raafat, P.M. Wolfe and H.K. Eldin, An inventory model for deteriorating items. Comput. Ind. Eng. 20 (1991) 89–94. [CrossRef] [Google Scholar]
  • M.I. Rashid and K. Shahzad, Food waste recycling for compost production and its economic and environmental assessment as circular economy indicators of solid waste management. J. Clean. Prod. 317 (2021) 128467. [CrossRef] [Google Scholar]
  • H. Rau, M.-Y. Wu and H.-M. Wee, Integrated inventory model for deteriorating items under a multi-echelon supply chain environment, Int. J. Prod. Econ. 86 (2003) 155–168. [CrossRef] [Google Scholar]
  • J. Rezaei and M. Davoodi, A joint pricing, lot-sizing, and supplier selection model. Int. J. Prod. Res. 50 (2012) 4524–4542. [CrossRef] [Google Scholar]
  • S. Ruidas, M.R. Seikh and P.K. Nayak, A production inventory model with interval-valued carbon emission parameters under price-sensitive demand. Comput. Ind. Eng. 154 (2021) 107154. [CrossRef] [Google Scholar]
  • S.S. Sana, A production-inventory model of imperfect quality products in a three-layer supply chain. Decis. Support Syst. 50 (2011) 539–547. [Google Scholar]
  • S.S. Sana, A collaborating inventory model in a supply chain. Econ. Model. 29 (2012) 2016–2023. [CrossRef] [Google Scholar]
  • B. Sang, Application of genetic algorithm and bp neural network in supply chain finance under information sharing. J. Comput. Appl. Math. 384 (2021) 113170. [CrossRef] [Google Scholar]
  • B. Sarkar, A production-inventory model with probabilistic deterioration in two-echelon supply chain management. Appl. Math. Model. 37 (2013) 3138–3151. [Google Scholar]
  • M. Sebatjane and O. Adetunji, Optimal lot-sizing and shipment decisions in a three-echelon supply chain for growing items with inventory level-and expiration date-dependent demand. Appl. Math. Model. 90 (2021) 1204–1225. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Sepehri, U. Mishra, M.-L. Tseng and B. Sarkar, Joint pricing and inventory model for deteriorating items with maximum lifetime and controllable carbon emissions under permissible delay in payments. Mathematics 9 (2021) 470. [CrossRef] [Google Scholar]
  • N. Srinivas and K. Deb, Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2 (1994) 221–248. [Google Scholar]
  • H.-M. Wee, Deteriorating inventory model with quantity discount, pricing and partial backordering. Int. J. Prod. Econ. 59 (1999) 511–518. [CrossRef] [Google Scholar]
  • P.-C. Yang and H.-M. Wee, An integrated multi-lot-size production inventory model for deteriorating item. Comput. Oper. Res. 30 (2003) 671–682. [Google Scholar]
  • J. Zhang, G. Liu, Q. Zhang and Z. Bai, Coordinating a supply chain for deteriorating items with a revenue sharing and cooperative investment contract. Omega 56 (2015) 37–49. [Google Scholar]
  • B. Zhi, X. Wang and F. Xu, The effects of in-transit inventory financing on the capital-constrained supply chain. Eur. J. Oper. Res. 296 (2022) 131–145. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.