Open Access
Issue |
RAIRO-Oper. Res.
Volume 57, Number 4, July-August 2023
|
|
---|---|---|
Page(s) | 2267 - 2278 | |
DOI | https://doi.org/10.1051/ro/2023109 | |
Published online | 18 September 2023 |
- A. Banerjee, On the spectrum of hypergraphs. Linear Algebra App. 614 (2021) 82–110. [CrossRef] [Google Scholar]
- A. Brouwer and W. Haemers, Spectra of Graphs. Springer, New York (2012). [CrossRef] [Google Scholar]
- K. Cardoso and V. Trevisan, The signless Laplacian matrix of hypergraphs. Spec. Matrices 10 (2022) 327–342. [CrossRef] [MathSciNet] [Google Scholar]
- D. Chen, Z. Chen and X. Zhang, Spectral radius of uniform hypergraphs and degree sequences. Front. Math. Chin. 12 (2017) 1279–1288. [CrossRef] [Google Scholar]
- F. Chung, Spectra Graph Theory. Vol 92. American Mathematical Society, Providence (1997). [Google Scholar]
- S. Cioabǎ, The spectral radius and the maximum degree of irregular graphs. Electron. J. Comb. 14 (2007) ♯R38. [CrossRef] [Google Scholar]
- S. Cioabǎ, D. Gregory and V. Nikiforov, Extreme eigenvalues of nonregular graphs. J. Comb. Theory Ser. B 97 (2007) 483–486. [CrossRef] [Google Scholar]
- J. Cooper and A. Dutle, Spectra of uniform hypergraphs. Linear Algebra App. 436 (2012) 3268–3292. [CrossRef] [Google Scholar]
- D. Cvetkovic, M. Doob and H. Sachs, Spectra of Graphs, Theory and Application. Academic Press, New York (2004). [Google Scholar]
- X. Duan, L. Wang, P. Xiao and X. Li, The (signless laplacian) spectral radius (of subgraphs) of uniform hypergraphs. Filomat 33 (2019) 4733–4745. [CrossRef] [MathSciNet] [Google Scholar]
- C. Hillar and L. Lim, Most tensor problems are NP-hard. J. ACM 60 (2013) 45. [CrossRef] [MathSciNet] [Google Scholar]
- O. Kitouni and N. Reff, Lower bounds for the Laplacian spectral radius of an oriented hypergraph. Aust. J. Comb. 74 (2019) 408–422. [Google Scholar]
- H. Li, J. Zhou and C. Bu, Principal eigenvectors and spectral radii of uniform hypergraphs. Linear Algebra App. 544 (2018) 273–285. [CrossRef] [Google Scholar]
- L. Lim, Singular values and eigenvalues of tensors, a variational approach, in 1st IEEE International Workshop on Computational Advances of Multitensor Adaptive Processing. Vol. 40. IEEE, Puerto Vallarta, Mexico (2005) 129–132. [Google Scholar]
- H. Lin, H. Guo and B. Zhou, On the α-spectral radius of irreglar uniform hypergraphs. Linear Multilinear Algebra 68 (2020) 265–277. [CrossRef] [MathSciNet] [Google Scholar]
- V. Nikiforov, The spectral radius of subgraphs of regular graphs. Electron. J. Comb. 14 (2007) ♯N20. [CrossRef] [Google Scholar]
- W. Ning, H. Li and M. Lu, on the signless Laplacian spectral radius of irregular graphs. Linear Algebra App. 438 (2013) 2280–2288. [CrossRef] [Google Scholar]
- L. Qi, Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40 (2005) 1320–1324. [Google Scholar]
- N. Reff, Spectral properties of oriented hypergraphs. Electron. J. Linear Algebra 27 (2014) 373–391. [CrossRef] [MathSciNet] [Google Scholar]
- N. Reff and L. Rusnak, An oriented hypergraphic approach to algebraic graph theory. Linear Algebra App. 437 (2012) 2262–2270. [CrossRef] [Google Scholar]
- J. Rodriguez, On the Laplacian eigenvalues and metric parameters of hypergraphs. Linear Multilinear Algebra 50 (2002) 1–14. [CrossRef] [MathSciNet] [Google Scholar]
- J. Rodriguez, Laplacian eigenvalues and partition problems in hypergraphs. Appl. Math. Lett. 22 (2009) 916–921. [CrossRef] [MathSciNet] [Google Scholar]
- L. Shi, The spectral radius of irregular graphs. Linear Algebra App. 431 (2009) 189–196. [CrossRef] [Google Scholar]
- D. Stevanović, The largest eigenvalue of nonregular graphs. J. Comb. Theory Ser. B 91 (2004) 143–146. [CrossRef] [Google Scholar]
- X. Yuan, M. Zhang and M. Lu, Some upper bounds on the eigenvalues of uniform hypergraphs. Linear Algebra App. 484 (2015) 540–549. [CrossRef] [Google Scholar]
- A. Zykov, Hypergraphs. Uspehi Mat. Nauk 29 (1974) 89–154 (in Russian). [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.