Open Access
RAIRO-Oper. Res.
Volume 57, Number 5, September-October 2023
Page(s) 2873 - 2887
Published online 13 November 2023
  • E. Algaba, J.M. Bilbao and R. van den Brink, Harsanyi power solutions for games on union stable systems. Ann. Oper. Res. 225 (2015) 27–44. [Google Scholar]
  • J.M. Alonso-Meijide and M.G. Fiestras-Janerio, The Banzhaf value and communication situations. Nav. Res. Log. 53 (2006) 198–203. [CrossRef] [Google Scholar]
  • J.M. Bilbao, Values and potential of games with cooperation structure. Int. J. Game Theory 27 (1998) 131–145. [CrossRef] [Google Scholar]
  • P. Borm, G. Owen and S. Tjis, On the position value for communication situations. SIAM J. Discrete Math. 5 (1992) 305–320. [CrossRef] [MathSciNet] [Google Scholar]
  • E. Calvo, J. Lasaga and A. van den Nouweland, Values of games with probabilistic graphs. Math. Soc. Sci. 37 (1999) 79–95. [CrossRef] [Google Scholar]
  • J. Derks, H. Haller and H. Peters, The selectope for cooperative TU-games. Int. J. Game. Theory 29 (2000) 23–38. [CrossRef] [Google Scholar]
  • J. Derks, G. van der Laan and V.A. Vasil’ev, Characterizations of the random order values by Harsanyi payoff vectors. Math. Methods Oper. Res. 64 (2006) 155–163. [Google Scholar]
  • J. Derks, G. van der Laan and V.A. Vasil’ev, On the Harsanyi payoff vectors and Harsanyi imputations. Theory Decis. 68 (2010) 301–310. [Google Scholar]
  • A. Ghintran, Weighted position values. Math. Soc. Sci. 65 (2013) 157–163. [Google Scholar]
  • A. Ghintran, E. González-Arangüena and C. Manuel, A probabilistic position value. Ann. Oper. Res. 1 (2012) 183–196. [Google Scholar]
  • D. Gómez, E. González-Arangüena, C. Manuel and G. Owen, A value for generalized probabilistic communication situations. Eur. J. Oper. Res. 190 (2008) 539–556. [Google Scholar]
  • G. Hamiache, A value with incomplete communication. Games Econ. Behav. 26 (1999) 59–78. [Google Scholar]
  • J.C. Harsanyi, A bargaining model for cooperative n-person games, in Contributions to the Theory of Games IV, edited by A.W. Tucker and R.D. Luce. Princeton University Press, Princeton (1959)325–355. [Google Scholar]
  • J.C. Harsanyi, A simplified bargaining model for the n-person cooperative game. Int. Econ. Rev. 4 (1963) 194–220. [Google Scholar]
  • P.J.J. Herings, G. van der Laan and A.J.J. Talman, The positional power of nodes in digraphs. Soc. Choice Welfare 24 (2005) 439–454. [CrossRef] [MathSciNet] [Google Scholar]
  • P.J.J. Herings, G. van der Laan and D. Talman, The average tree solution for cycle-free graph games. Games Econ. Behav. 62 (2008) 77–92. [CrossRef] [Google Scholar]
  • P.J.J. Herings, G. van der Laan, A.J.J. Talman and Z. Yang, The average tree solution for cooperative games with communication structure. Games Econ. Behav. 68 (2010) 626–633. [Google Scholar]
  • X.F. Hu, D.F. Li and G.J. Xu, Fair distribution of surplus and efficient extensions of the Myerson value. Econ. Lett. 165 (2018) 1–5. [Google Scholar]
  • R. Meessen, Communication games (in Dutch). M.D. thesis, University of Nijmegen, The Netherlands (1988). [Google Scholar]
  • R.B. Myerson, Graphs and cooperation in games. Math. Oper. Res. 2 (1977) 225–229. [Google Scholar]
  • F. Navarro, The center value: a sharing rule for cooperative games on acyclic graphs. Math. Soc. Sci. 105 (2020) 1–13. [Google Scholar]
  • G. Owen, Values of graph-restricted games. SIAM J. Algebr. Discrete Methods 7 (1986) 210–220. [CrossRef] [Google Scholar]
  • E.F. Shan, J.L. Shi and L. Cai, The allocation rule for TU-games with coalition and probabilistic graph structures and its applications. Chin. J. Manage. Sci. (2021). DOI: 10.16381/j.cnki.issn1003-207x.2020.1348. [Google Scholar]
  • L. Shapley, A value for n-person games, in Contributions to the Theory of Games II, edited by H.W. Kuhn and A.W. Tucker. Princeton University Press, Princeton (1953) 307–317. [Google Scholar]
  • J.L. Shi and E.F. Shan, The Banzhaf value for generalized probabilistic communication situations. Ann. Oper. Res. 301 (2020) 225–244. [Google Scholar]
  • J.L. Shi, L. Cai, E.F. Shan and W.R. Lyu, A value for cooperative games with coalition and probabilistic graph structures. J. Comb. Optim. 43 (2022) 646–671. [Google Scholar]
  • V.A. Vasil’ev, On a class of operators in a space of regular set functions. Optimizacija 28 (1982) 102–111. (in Russian). [Google Scholar]
  • V.A. Vasil’ev, Extreme points of the Weber polytope. Discretnyi Analiz i Issledonaviye Operatsyi, Ser. 110 (2003) 17–55. (in Russian). [Google Scholar]
  • R. van den Brink, P. Borm, R. Hendrickx and G. Owen, Characterizations of the beta- and the degree network power measure. Theory Decis. 64 (2008) 519–536. [Google Scholar]
  • R. van den Brink, G. van der Laan and V. Pruzhansky, Harsanyi power solutions for graph-restricted games. Int. J. Game Theory 40 (2011) 87–110. [CrossRef] [Google Scholar]
  • R. van den Brink, A. Khmelnitskaya and G. van der Laan, An efficient and fair solution for communication graph games. Econ. Lett. 117 (2012) 786–789. [Google Scholar]
  • Z. Zou and Q. Zhang, Harsanyi power solution for games with restricted cooperation. J. Comb. Optim. 35 (2018) 26–47. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.