Issue
RAIRO-Oper. Res.
Volume 57, Number 5, September-October 2023
Graphs, Combinatorics, Algorithms and Optimization
Page(s) 2527 - 2536
DOI https://doi.org/10.1051/ro/2023140
Published online 06 October 2023
  • Z. Baranyai, On the factorization of the complete uniform hypergraph. Proc. Coll. Keszthely (1971). 91–107. [Google Scholar]
  • M. Behzad, Graphs and their chromatic numbers, Ph.D. thesis, Michigan State University (1965). [Google Scholar]
  • L.W. Beineke, Characterizations of derived graphs. J. Comb. Theory 9 (1970) 129–135. [CrossRef] [Google Scholar]
  • C.N. Campos and C.P. de Mello, A result on the total colouring of powers of cycles. Discret. Appl. Math. 155 (2007) 585–597. [CrossRef] [Google Scholar]
  • A.G. Chetwynd and A.J.W. Hilton, Some refinements of the total chromatic number conjecture. Congr. Numer. 66 (1988) 195–216. [MathSciNet] [Google Scholar]
  • G. Jayaraman, D. Muthuramakrishnan and S. Vishnu Kumar, Total coloring of line graph and square graph for certain graphs. Adv. Appl. Math. Sci. 21 (2022). [Google Scholar]
  • D. König, Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre, Math. Ann. 77 (1916) 453–465. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Mohan, J. Geetha and K. Somasundaram, Total coloring of quasi-line graphs and inflated graphs. Discret. Math. Algorithms Appl. 13 (2021). [CrossRef] [Google Scholar]
  • T. Niessen, How to find overfull subgraphs in graphs with large maximum degree. Discret. Appl. Math. 51 (1994) 117–125. [CrossRef] [Google Scholar]
  • M. Rosenfeld, On the total coloring of certain graphs. Isr. J. Math. 9 (1971) 396–402. [CrossRef] [Google Scholar]
  • A. Sànchez-Arroyo, Determining the total colouring number is NP-hard. Discret. Math. (1989) 315–319. [CrossRef] [Google Scholar]
  • R. Vignesh, J. Geetha and K. Somasundaram, Total coloring conjecture for certain classes of graphs. Algorithms 11 (2018) 161. [CrossRef] [Google Scholar]
  • V. Vizing, On an estimate of the chromatic class of a p-graph. Metody Diskret. Anal. 3 (1964) 25–30. [Google Scholar]
  • A. Zorzi, C. Figueiredo, R. Machado, L. Zatesko and U. Souza, Compositions, decompositions, and conformability for total coloring on power of cycle graphs. Discret. Appl. Math. 323 (2022) 349–363. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.