Open Access
RAIRO-Oper. Res.
Volume 57, Number 5, September-October 2023
Page(s) 2537 - 2559
Published online 10 October 2023
  • C. Reynolds, J. Buckley, P. Weinstein and J. Boland, Are the dietary guidelines for meat, fat, fruit and vegetable consumption appropriate for environmental sustainability? A review of the literature. Nutrients 6 (2014) 2251–2265. [CrossRef] [PubMed] [Google Scholar]
  • H.-K. Chen, C.-F. Hsueh and M.-S. Chang, Production scheduling and vehicle routing with time windows for perishable food products. Comput. Oper. Res. 36 (2009) 2311–2319. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Esteso, M.M.E. Alemany, Á. Ortiz, Impact of product perishability on agri-food supply chains design. Appl. Math. Model. 96 (2021) 20–38. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Corrado, F. Ardente, S. Sala and E. Saouter, Modelling of food loss within life cycle assessment: from current practice towards a systematisation. J. Clean. Prod. 140 (2017) 847–859. [CrossRef] [Google Scholar]
  • J. Pryshlakivsky and C. Searcy, Life cycle assessment as a decision-making tool: practitioner and managerial considerations. J. Clean. Prod. 309 (2021) 127344. [CrossRef] [Google Scholar]
  • A.K. Cerutti, G.L. Beccaro, S. Bruun, S. Bosco, D. Donno, B. Notarnicola and G. Bounous, Life cycle assessment application in the fruit sector: state of the art and recommendations for environmental declarations of fruit products. J. Clean. Prod. 73 125–135. [Google Scholar]
  • L.C. Coelho and G. Laporte, Optimal joint replenishment, delivery and inventory management policies for perishable products. Comput. Oper. Res. 47 (2014) 42–52. [CrossRef] [MathSciNet] [Google Scholar]
  • F. Alkaabneh, A. Diabat and H.O. Gao, Benders decomposition for the inventory vehicle routing problem with perishable products and environmental costs. Comput. Oper. Res. 113 (2020) 104751. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Ghasemkhani, R. Tavakkoli-Moghaddam, S. Shahnejat-Bushehri, S. Momen and H. Tavakkoli-Moghaddam, An integrated production inventory routing problem for multi perishable products with fuzzy demands and time windows. IFACPapersOnLine 52 (2019) 523–528. [Google Scholar]
  • H. Grillo, M.M.E. Alemany, A. Ortiz and V.S. Fuertes-Miquel, Mathematical modelling of the order-promising process for fruit supply chains considering the perishability and subtypes of products. Appl. Math. Model. 49 (2017) 255–278. [CrossRef] [MathSciNet] [Google Scholar]
  • J.G.A.J. van der Vorst, S.-O. Tromp and D.-J. van der Zee, Simulation modelling for food supply chain redesign; integrated decision making on product quality, sustainability and logistics. Int. J. Prod. Res. 47 (2009) 6611–6631. [CrossRef] [Google Scholar]
  • P. Priyamvada, R. Rini and C.K. Jaggi, Optimal inventory strategies for deteriorating items with price-sensitive investment in preservation technology. RAIRO: Oper. Res. 56 (2022) 601–617. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • K.H. Widodo, H. Nagasawa, K. Morizawa and M. Ota, A periodical flowering–harvesting model for delivering agricultural fresh products. Eur. J. Oper. Res. 170 (2006) 24–43. [CrossRef] [Google Scholar]
  • M. Bortolini, M. Faccio, M. Gamberi and F. Pilati, Multi-objective design of multi-modal fresh food distribution networks. Int. J. Logist. Syst. Manag. 24 (2016) 155. [Google Scholar]
  • M. Musavi and A. Bozorgi-Amiri, A multi-objective sustainable hub location-scheduling problem for perishable food supply chain. Comput. Ind. Eng. 113 (2017) 766–778. [CrossRef] [Google Scholar]
  • M. de Keizer, R. Akkerman, M. Grunow, J.M. Bloemhof, R. Haijema and J.G.A.J. van der Vorst, Logistics network design for perishable products with heterogeneous quality decay. Eur. J. Oper. Res. 262 (2017) 535–549. [CrossRef] [Google Scholar]
  • G. Zhang, W. Habenicht and W.E. Ludwig Spie, Improving the structure of deep frozen and chilled food chain with tabu search procedure. J. Food Eng. 60 (2003) 67–79. [CrossRef] [Google Scholar]
  • A. Rong, R. Akkerman and M. Grunow, An optimization approach for managing fresh food quality throughout the supply chain. Int. J. Prod. Econ. 131 (2011) 421–429. [Google Scholar]
  • S. Zanoni and L. Zavanella, Chilled or frozen? Decision strategies for sustainable food supply chains. Int. J. Prod. Econ. 140 (2012) 731–736. [CrossRef] [Google Scholar]
  • T.W. Chien, A. Balakrishnan and R.T. Wong, An integrated inventory allocation and vehicle routing problem. Transp. Sci. 23 (1989) 67–76. [CrossRef] [Google Scholar]
  • J. Caceres-Cruz, P. Arias, D. Guimarans, D. Riera and A.A. Juan, Rich vehicle routing problem. ACM Comput. Surv. 47 (2015) 1–28. [CrossRef] [Google Scholar]
  • T.R.P. Ramos, M.I. Gomes and A.P.B. Póvoa, Multi-depot vehicle routing problem: a comparative study of alternative formulations. Int. J. Logist. Res. Appl. 23 (2020) 103–120. [CrossRef] [Google Scholar]
  • T.F. Abdelmaguid, M.M. Dessouky, F. Ord and F. Ordóňez, Heuristic approaches for the inventory–routing problem with backlogging. Comput. Ind. Eng. 56 (2009) 1519–1534. [CrossRef] [Google Scholar]
  • A. Ahmadi-Javid and A.H. Seddighi, A location-routing-inventory model for designing multisource distribution networks. Eng. Optim. 44 (2012) 637–656. [CrossRef] [MathSciNet] [Google Scholar]
  • P. Amorim and B. Almada-Lobo, The impact of food perishability issues in the vehicle routing problem. Comput. Ind. Eng. 67 (2014) 223–233. [CrossRef] [Google Scholar]
  • B. Vahdani, S.T.A. Niaki and S. Aslanzade, Production-inventory–routing coordination with capacity and time window constraints for perishable products: heuristic and meta-heuristic algorithms. J. Clean. Prod. 161 (2017) 598–618. [CrossRef] [Google Scholar]
  • S.-M. Hosseini-Motlagh, M. Ghatreh Samani and A. Jokar, Presenting a model and heuristic algorithm for two-Echelon locationrouting problem under uncertainty considering the simultaneous pickup and delivery. J. Model. Eng. 16 (2018) 339–361. [Google Scholar]
  • Z. Rafie-Majd, S.H.R. Pasandideh and B. Naderi, Modelling and solving the integrated inventory-location-routing problem in a multi-period and multi-perishable product supply chain with uncertainty: Lagrangian relaxation algorithm. Comput. Chem. Eng. 109 (2018) 9–22. [Google Scholar]
  • M. Soysal, J.M. Bloemhof-Ruwaard, R. Haijema and J.G.A.J. van der Vorst, Modeling a green inventory routing problem for perishable products with horizontal collaboration. Comput. Oper. Res. 89 (2018) 168–182. [CrossRef] [MathSciNet] [Google Scholar]
  • H.M. Afsar, S. Afsar and J.J. Palacios, Vehicle routing problem with zone-based pricing. Transp. Res. Part E Logist. Transp. Rev. 152 (2021) 102383. [CrossRef] [Google Scholar]
  • M. Biuki, A. Kazemi and A. Alinezhad, An integrated location-routing-inventory model for sustainable design of a perishable products supply chain network. J. Clean. Prod. 260 (2020) 120842. [CrossRef] [Google Scholar]
  • A. Anosike, H. Loomes, C.K. Udokporo and J.A. Garza-Reyes, Exploring the challenges of electric vehicle adoption in final mile parcel delivery. Int. J. Logist. Res. Appl. 26 (2023) 683–707. [CrossRef] [Google Scholar]
  • R. Pinto, M. Zambetti, A. Lagorio and F. Pirola, A network design model for a meal delivery service using drones. Int. J. Logist. Res. Appl. 23 (2020) 354–374. [CrossRef] [Google Scholar]
  • M.M. Morales Chavez, Y. Costa and W. Sarache, A three-objective stochastic location–inventory–routing model for agricultural waste-based biofuel supply chain. Comput. Ind. Eng. 162 (2021) 107759. [CrossRef] [Google Scholar]
  • A. Hiassat, A. Diabat and I. Rahwan, A genetic algorithm approach for location–inventory–routing problem with perishable products. J. Manuf. Syst. 42 (2017) 93–103. [CrossRef] [Google Scholar]
  • S.U.K. Rohmer, G.D.H. Claassen and G. Laporte, A two-echelon inventory routing problem for perishable products. Comput. Oper. Res. 107 (2019) 156–172. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Yavari, H. Enjavi and M. Geraeli, Demand management to cope with routes disruptions in location–inventory–routing problem for perishable products. Res. Transp. Bus. Manag. 37 (2020) 100552. [Google Scholar]
  • S. Mahata and B.K. Debnath, A profit maximization single item inventory problem considering deterioration during carrying for price dependent demand and preservation technology investment. RAIRO: Oper. Res. 56 (2022) 1841–1856. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • N. Al Theeb, H.J. Smadi, T.H. Al-Hawari and M.H. Aljarrah, Optimization of vehicle routing with inventory allocation problems in Cold Supply Chain Logistics. Comput. Ind. Eng. 142 (2020) 106341. [CrossRef] [Google Scholar]
  • A. Yousefi, M.S. Pishvaee and E. Teimoury, Adjusting the credit sales using CVaR-based robust possibilistic programming approach. Iran. J. Fuzzy Syst. 18 (2021) 117–136. [Google Scholar]
  • J. Jouzdani and K. Govindan, On the sustainable perishable food supply chain network design: a dairy products case to achieve sustainable development goals. J. Clean. Prod. 278 (2021) 123060. [CrossRef] [Google Scholar]
  • F. Zarouri, A.A. Khamseh and S.H.R. Pasandideh, Dynamic pricing in a two-echelon stochastic supply chain for perishable products. RAIRO: Oper. Res. 56 (2022) 2425–2442. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • T. Maiti, Optimal product quality and pricing strategy for a two-period closed-loop supply chain under return policy. RAIRO: Oper. Res. 56 (2022) 3817–3843. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • H. Yang and J. Peng, Coordinating a fresh-product supply chain with demand information updating: Hema Fresh O2O platform. RAIRO: Oper. Res. 55 (2021) 285–318. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • G.B. Dantzig and G. Infanger, Multi-stage stochastic linear programs for portfolio optimization. Ann. Oper. Res. 45 (1993) 59–76. [CrossRef] [MathSciNet] [Google Scholar]
  • J.M. Mulvey, R.J. Vanderbei and S.A. Zenios, Robust optimization of large-scale systems. Oper. Res. 43 (1995) 264–281. [Google Scholar]
  • D. Bertsimas and A. Thiele, A robust optimization approach to inventory theory. Oper. Res. 54 (2006) 150–168. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Ahmadvand and M.S. Pishvaee, An efficient method for kidney allocation problem: a credibility-based fuzzy common weights data envelopment analysis approach. Health Care Manag. Sci. 21 (2018) 587–603. [CrossRef] [PubMed] [Google Scholar]
  • M.S. Pishvaee, J. Razmi and S.A. Torabi, Robust possibilistic programming for socially responsible supply chain network design: a new approach. Fuzzy Sets Syst. 206 (2012) 1–20. [Google Scholar]
  • M. Awad, M. Ndiaye and A. Osman, Vehicle routing in cold food supply chain logistics: a literature review. Int. J. Logist. Manag. 32 (2021) 592–617. [CrossRef] [Google Scholar]
  • K.T. Malladi and T. Sowlati, Sustainability aspects in inventory routing problem: a review of new trends in the literature. J. Clean. Prod. 197 (2018) 804–814. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.