Open Access
Issue
RAIRO-Oper. Res.
Volume 58, Number 2, March-April 2024
Page(s) 1871 - 1898
DOI https://doi.org/10.1051/ro/2024002
Published online 19 April 2024
  • W.D. Cook and J. Zhu, editors. Data Envelopment Analysis: A Handbook of Modeling Internal Structure and Network. Springer, New York (2014). [Google Scholar]
  • W.W. Cooper, L.M. Seiford and J. Zhu, A unified additive model approach for evaluating Inefficiency and congestion whit associated measures in DEA. Soc.-Econ. Planning Sci. 34 (2000) 1–25. [Google Scholar]
  • W.W. Cooper, L.M. Seiford and J. Zhu, Slacks and congestion: a response to a comment by R. F¨are and S. Grosskopf. Soc.-Econ. Planning Sci. 35 (2001) 205–215. [Google Scholar]
  • W.W. Cooper, H. Deng, Z.M. Huang and S.X. Li, A one-model approach to congestion in DEA. Soc.-Econ. Planning Sci. 36 (2002) 231–238. [Google Scholar]
  • R. F¨are and S. Grosskopf, Measuring congestion in production. Zeitschrift für Nationalökonomie 43 (1983) 257–271. [Google Scholar]
  • R. F¨are and S. Grosskopf, Decompose in technical efficiency with care. Manage. Sci. 46 (2000) 167–168. [Google Scholar]
  • R. F¨are and L. Svensson, Congestion of production factors. Econometrica 48 (1980) 1745–1752. [Google Scholar]
  • R. F¨are, S. Grosskopf and C.A.K. Lovell, The Measurement of Efficiency of Production. Kluwer-Nijhoff Publishing, Boston, MA (1985). [Google Scholar]
  • S.S. Kassaei, F. Hosseinzadeh Lotfi, A. Amirteimori, M. Rostamy Malkhalifeh and B. Rahmani, Identification and evaluation of congestion in two-stage network data envelopment analysis. Int. J. Res. Ind. Eng. 12 (2023) 53–72. [Google Scholar]
  • M. Khoveyni, R. Eslami and G. Yang, Negative data in DEA: Recognizing congestion and specifying the least and the most congested decision making units. Comput. Oper. Res. 79 (2017) 39–48. [Google Scholar]
  • M. Khoveyni, H. Fukuyama, R. Eslami and G. Yang, Variations effect of intermediate products on the second stage in two-stage processes. Omega 85 (2019) 35–48. [Google Scholar]
  • M. Mehdiloozad, J. Zhu and B.K. Sahoo, Identification of congestion in data envelopment analysis under the occurrence of multiple projections: a reliable method capable of dealing with negative data. Eur. J. Oper. Res. 265 (2018) 644–654. [Google Scholar]
  • S.R. Moosavi and H. Bagherzadeh, Congestion and non-congestion areas: identify and measure congestion in DEA. RAIRO: Oper. Res. 56 (2022) 2067–2092. [Google Scholar]
  • A.A. Noura, F.H. Lotfi, G.R. Jahanshahloo, S.F. Rashidi and B.R. Parker, A new method for measuring congestion in DEA. Soc.-Econ. Planning Sci. 44 (2010) 240–246. [Google Scholar]
  • J. Odeck, Congestion, ownership, a region of operation, and scale: their impact on bus operator performance in Norway. Soc.-Econ. Planning Sci. 40 (2006) 52–69. [Google Scholar]
  • M. Shadab, S. Saati, R. Farzipoor Saen, M. Khoveyni and A. Mostafaee, Measuring congestion by anchor points in DEA. Sadhana 45 (2020) 37. [Google Scholar]
  • M. Shadab, S. Saati, R. Farzipoor Saen, M. Khoveyni and A. Mostafaee, Measuring congestion in sustainable supply chain based on DEA. Neural Comput. App. 33 (2021) 12477–12491. [Google Scholar]
  • M. Shadab, S. Saati, R. Farzipoor Saen, M. Khoveyni and A. Mostafaee, Detecting congestion in DEA by solving one model. Oper. Res. Decis. 31 (2021) 61–76. [Google Scholar]
  • T. Sueyoshi and K. Moussa, Data envelopment analysis congestion and returns to scale under an occurrence of multiple optimal projections. Eur. J. Oper. Res. 194 (2009) 592–607. [Google Scholar]
  • K. Tone, A slacks-based measure of efficiency in DEA. Eur. J. Oper. Res. 130 (2001) 498–509. [Google Scholar]
  • K. Tone and B.K. Sahoo, The degree of scale economies and congestion: a unified DEA approach. Eur. J. Oper. Res. 158 (2004) 755–772. [Google Scholar]
  • Q.L. Wei and H. Yan, Congestion and returns to scale in DEA. Eur. J. Oper. Res. 153 (2004) 641–660. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.