Open Access
Issue
RAIRO-Oper. Res.
Volume 58, Number 2, March-April 2024
Page(s) 1163 - 1186
DOI https://doi.org/10.1051/ro/2024015
Published online 13 March 2024
  • T.D. Chuong, Nondifferentiable fractional semi-infinite multiobjective optimization problems. Oper. Res. Lett. 44 (2016) 260–266. [CrossRef] [MathSciNet] [Google Scholar]
  • T.D. Chuong, Optimality and duality for proper and isolated efficiencies in multiobjective optimization. Nonlinear Anal. 76 (2013) 93–104. [CrossRef] [MathSciNet] [Google Scholar]
  • T.D. Chuong and D.S. Kim, Nonsmooth semi-infinite multiobjective optimization problems. J. Optim. Theory Appl. 160 (2014) 748–762. [CrossRef] [MathSciNet] [Google Scholar]
  • T.D. Chuong and D.S. Kim, Approximate solutions of multiobjective optimization problems. Positivity 20 (2016) 187–207. [CrossRef] [MathSciNet] [Google Scholar]
  • T.D. Chuong and D.S. Kim, Normal regularity for the feasible set of semi-infinite multiobjective optimization problems with applications. Ann. Oper. Res. 267 (2018) 81–99. [CrossRef] [MathSciNet] [Google Scholar]
  • T.D. Chuong and J.C. Yao, Isolated and proper effciencies in semi-infinite vector optimization problems. J. Optim. Theory Appl. 162 (2014) 447–462. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Fakhara, M.R. Mahyarinia and J. Zafarani, On approximate solutions for nonsmooth robust multiobjective optimization problems. Optimization 68 (2019) 1653–1683. [CrossRef] [MathSciNet] [Google Scholar]
  • I. Ginchev, A. Guerraggio and M. Rocca, Isolated minimizers and proper efficiency for C0,1 constrained vector optimization problems. J. Math. Anal. Appl. 309 (2005) 353–368. [CrossRef] [MathSciNet] [Google Scholar]
  • I. Ginchev, A. Guerraggio and M. Rocca, Stability of property efficient points and isolated minimizers of constrained vector optimization problems. Rend. Circ. Mat. Palermo 56 (2007) 137–156. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Guerraggio, E. Molho and A. Zaffaroni, On the notion of proper efficiency in vector optimization. J. Optim. Theory Appl. 82 (1994) 1–21. [CrossRef] [MathSciNet] [Google Scholar]
  • N.H. Hung, H.N. Tuan and N.V. Tuyen, On approximate quasi Pareto solutions in nonsmooth semi-infinite interval-valued vector optimization problems. Applicable Analysis 102 (2023) 2432–2448. [CrossRef] [MathSciNet] [Google Scholar]
  • L.G. Jiao, B.V. Dinh, D.S. Kim and M. Yoon, Mixed type duality for a class of multiple objective optimization problems with an infinite number of constraints. J. Nonlinear Convex Anal. 21 (2020) 49–61. [MathSciNet] [Google Scholar]
  • L.G. Jiao, D.S. Kim and Y.Y. Zhou, Quasi ε-solution in a semi-infinite programming problem with locally Lipschitz data. Optim. Lett. 15 (2021) 1759–1772. [CrossRef] [MathSciNet] [Google Scholar]
  • B. Jimenez, Strict efficiency in vector optimization. J. Math. Anal. Appl. 265 (2002) 264–284. [CrossRef] [MathSciNet] [Google Scholar]
  • B. Jimenez, V. Novo and M. Sama, Scalarization and optimality conditions for strict minimizers in multiobjective optimization via contingent epiderivatives. J. Math. Anal. Appl. 352 (2009) 788–798. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Kabgani and M. Soleimani-damaneh, Characterization of (weakly/properly/robust) efficient solutions in nonsmooth semi-infinite multiobjective optimization using convexificators. Optimization 67 (2018) 217–235. [CrossRef] [MathSciNet] [Google Scholar]
  • N. Kanzi, On strong KKT optimality conditions for multiobjective semi-infinite programming problems with Lipschitzian data. Optim. Lett. 9 (2015) 1121–1129. [CrossRef] [MathSciNet] [Google Scholar]
  • N. Kanzi and S. Nobakhtian, Optimality conditions for nonsmooth semi-infinite multiobjective programming. Optim. Lett. 8 (2014) 1517–1528. [CrossRef] [MathSciNet] [Google Scholar]
  • P.Q. Khanh and N.M. Tung, On the Mangasarian–Fromovitz constraint qualification and Karush–Kuhn–Tucker conditions in nonsmooth semi-infinite multiobjective programming. Optim. Lett. 14 (2020) 2055–2072. [CrossRef] [MathSciNet] [Google Scholar]
  • C. Khantree and R. Wangkeeree, On quasi approximate solutions for nonsmooth robust semi-infinite optimization problems. Carpathian J. Math. 35 (2019) 417–426. [CrossRef] [MathSciNet] [Google Scholar]
  • D.S. Kim and T.Q. Son, An approach to ε-duality theorems for nonconvex semi-infinite multiobjective optimization problems. Taiwan J. Math. 22 (2018) 1261–1287. [Google Scholar]
  • J.C. Liu, ε-Properly efficient solutions to nondifferentiable multi-objective programming problems. Appl. Math. Lett. 12 (1999) 109–113. [CrossRef] [MathSciNet] [Google Scholar]
  • X.J. Long, Y.B. Xiao and N.J. Huang, Optimality conditions of approximate solutions for nonsmooth semi-infinite programming problems. J. Oper. Res. Soc. China 6 (2018) 289–299. [CrossRef] [MathSciNet] [Google Scholar]
  • P. Loridan, Necessary conditions for ε-optimality. Optimality and stability in mathematical programming. Math. Program. Study 19 (1982) 140–152. [CrossRef] [Google Scholar]
  • P. Loridan, ε-solutions in vector minimization problems. J. Optim. Theory Appl. 43 (1984) 265–276. [CrossRef] [MathSciNet] [Google Scholar]
  • B.S. Mordukhovich, Variational Analysis and Generalized Differentiation I: Basic Theory. Springer, Berlin (2006). [Google Scholar]
  • T.H. Pham, On isolated/properly efficient solutions in nonsmooth robust semi-infinite multiobjective optimization. Bull. Malays. Math. Sci. Soc. 46 (2023) 73. [CrossRef] [Google Scholar]
  • T.H. Pham, On optimality conditions and duality theorems for approximate solutions of nonsmooth infinite optimization problems. Positivity 27 (2023) 19. [CrossRef] [Google Scholar]
  • M. Rahimi and M. Soleimani-Damaneh, Robustness in deterministic vector optimization. J. Optim. Theory Appl. 179 (2018) 137–162. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Rahimi and M. Soleimani-Damaneh, Isolated efficiency in nonsmooth semi-infinite multi-objective programming. Optimization 67 (2018) 1923–1947. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Rahimi and M. Soleimani-Damaneh, Characterization of norm-based robust solutions in vector Optimization. J. Optim. Theory Appl. 185 (2020) 554–573. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Rezayi, Characterization of isolated efficient solutions in nonsmooth multiobjective semi-infinite programming. Iran J. Sci. Technol. Trans. Sci. 43 (2019) 1835–1839. [CrossRef] [MathSciNet] [Google Scholar]
  • T. Shitkovskaya, Z. Hong, D.S. Kim and G.R. Piao, Approximate necessary optimality in fractional semi-infinite multiobjective optimization. J. Nonlinear Convex Anal. 21 (2020) 195–204. [MathSciNet] [Google Scholar]
  • V. Singh, A. Jayswal, I. Stancu-Minasian and A.M. Rusu-Stancu, Isolated and proper efficiencies for semi-infinite multiobjective fractional problems. U.P.B. Sci. Bull. Ser. A 83 (2021) 111–124. [Google Scholar]
  • V. Singh, A. Jayswal, I. Stancu-Minasian and A.M. Rusu-Stancu, Duality for a class of nonsmooth semi-infinite multiobjective fractional optimization problems. U.P.B. Sci. Bull. Ser. A 84 (2022) 61–68. [Google Scholar]
  • T.Q. Son and D.S. Kim, ε-mixed duality for nonconvex multiobjective programs with an infinite number of constraints. J. Glob. Optim. 57 (2013) 447–465. [CrossRef] [MathSciNet] [Google Scholar]
  • T.Q. Son, J.J. Strodiot and V.H. Nguyen, ε-optimality and ε-Lagrangian duality for a nonconvex programming problem with an infinite number of constraints. J. Optim. Theory App. 141 (2009) 389–409. [CrossRef] [MathSciNet] [Google Scholar]
  • T.Q. Son, N.V. Tuyen and C.F. Wen, Optimality conditions for approximate Pareto solutions of a nonsmooth vector optimization problem with an infinite number of constraints. Acta Math. Vietnam 45 (2020) 435–448. [CrossRef] [MathSciNet] [Google Scholar]
  • X.K. Sun, K.L. Teo, J. Zheng and L. Liu, Robust approximate optimal solutions for nonlinear semi-infinite programming with uncertainty. Optimization 69 (2020) 2109–2020. [CrossRef] [MathSciNet] [Google Scholar]
  • L.T. Tung, Strong Karush–Kuhn–Tucker optimality conditions for multiobjective semi-infinite programming via tangential subdifferential. RAIRO Oper. Res. 52 (2018) 1019–1041. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • L.T. Tung, Karush–Kuhn–Tucker optimality conditions and duality for multiobjective semi-infinite programming via tangential subdifferentials. Numer. Funct. Anal. Optim. 41 (2020) 659–684. [CrossRef] [MathSciNet] [Google Scholar]
  • L.T. Tung, Strong Karush–Kuhn–Tucker optimality conditions for Borwein properly efficient solutions of multiobjective semi-infinite programming. Bull. Braz. Math. Soc. 52 (2021) 1–22. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.