Open Access
RAIRO-Oper. Res.
Volume 58, Number 2, March-April 2024
Page(s) 1187 - 1206
Published online 13 March 2024
  • M. Abdullah and A. Gürsel, Consideration of skills in assembly lines and seru production systems. Asian J. Manag. Sci. Appl. 4 (2019) 99–123. [Google Scholar]
  • B. Afshar-Nadjafi, Multi-skilling in scheduling problems: a review on models, methods and applications. Comput. Ind. Eng. 151 (2021) 107004. [CrossRef] [Google Scholar]
  • K. Amine, Multiobjective simulated annealing: principles and algorithm variants. Adv. Oper. Res. 2019 (2019) 8134674. [Google Scholar]
  • M. Bortolini, Analytic model to predict productivity in divisional seru production environment. Comput. Ind. Eng. 177 (2023) 109058. [CrossRef] [Google Scholar]
  • K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6 (2002) 182–197. [CrossRef] [Google Scholar]
  • G. Fu, Y. Yu, W. Sun and I. Kaku, To reduce maximum tardiness by seru production: model, cooperative algorithm combining reinforcement learning and insights. Int. J. Ind. Eng. Comput. 14 (2023) 65–82. [Google Scholar]
  • H. Ghiasi, D. Pasini and L. Lessard, A non-dominated sorting hybrid algorithm for multi-objective optimization of engineering problems. Eng. Optim. 43 (2011) 39–59. [CrossRef] [Google Scholar]
  • S. Hashemi-Petroodi, A. Dolgui, S. Kovalev, M. Kovalyov and S. Thevenin, Workforce reconfiguration strategies in manufacturing systems: a state of the art. Int. J. Prod. Res. 59 (2021) 6721–6744. [CrossRef] [Google Scholar]
  • H. Ishibuchi, R. Imada, N. Masuyama and Y. Nojima, Comparison of hypervolume, IGD and IGD+ from the viewpoint of optimal distributions of solutions. Lect. Notes Comput. Sci. 11411 (2019) 332–345. [CrossRef] [Google Scholar]
  • I. Kaku, J. Gong, J. Tang and Y. Yin, Modeling and numerical analysis of line-cell conversion problems. Int. J. Prod. Res. 47 (2009) 2055–2078. [CrossRef] [Google Scholar]
  • J. Lian, C. Liu, W. Li and Y. Yin, A multi-skilled worker assignment problem in seru production systems considering the worker heterogeneity. Comput. Ind. Eng. 118 (2018) 366–382. [CrossRef] [Google Scholar]
  • C. Liu, W. Li, J. Lian and Y. Yin, Reconfiguration of assembly systems: from conveyor assembly line to serus. J. Manuf. Syst. 31 (2012) 312–325. [CrossRef] [Google Scholar]
  • C. Liu, N. Yang, W. Li, J. Lian, S. Evans and Y. Yin, Training and assignment of multi-skilled workers for implementing seru production systems. Int. J. Adv. Manuf. Technol. 69 (2013) 937–959. [CrossRef] [Google Scholar]
  • F. Liu, B. Niu, M. Xing, L. Wu and Y. Feng, Optimal cross-trained worker assignment for a hybrid seru production system to minimize makespan and workload imbalance. Comput. Ind. Eng. 160 (2021) 107552. [CrossRef] [Google Scholar]
  • F. Liu, K. Fang, J. Tang and Y. Yin, Solving the rotating seru production problem with dynamic multi-objective evolutionary algorithms. J. Manag. Sci. Eng. 7 (2022) 48–66. [Google Scholar]
  • T. McDonald, K. Ellis, E. Van Aken and C. Patrick Koelling, Development and application of a worker assignment model to evaluate a lean manufacturing cell. Int. J. Prod. Res. 47 (2009) 2427–2447. [CrossRef] [Google Scholar]
  • D. Pe¯na, A. Tchernykh, B. Dorronsoro and P. Ruiz, A novel multi-objective optimization approach to guarantee quality of service and energy efficiency in a heterogeneous bus fleet system. Eng. Optim. 55 (2023) 981–997. [CrossRef] [Google Scholar]
  • K. Stecke, Y. Yin, I. Kaku and Y. Murase, Seru: the organizational extension of JIT for a super-talent factory. Int. J. Strateg. Decis. Sci. 3 (2012) 106–119. [CrossRef] [Google Scholar]
  • G. Suer and M. Abdullah, Selection of different seru production systems in multi-period environments. Proc. First Central Am. Caribbean Int. Conf. Ind. Eng. Oper. Manage. (2021) [Google Scholar]
  • W. Sun, Q. Li, C. Huo, Y. Yu and K. Ma, Formulations, features of solution space, and algorithms for line-pure seru system conversion. Math. Probl. Eng. 2016 (2016) 9748378. [Google Scholar]
  • L. Thi, T. Mai Anh and N. Van Hop, An improved hybrid metaheuristics and rule-based approach for flexible job-shop scheduling subject to machine breakdowns. Eng. Optim. 55 (2023) 1535–1555. [CrossRef] [Google Scholar]
  • Y. Wang and J. Tang, Optimized skill configuration for the seru production system under an uncertain demand. Ann. Oper. Res. 316 (2022) 445–465. [CrossRef] [MathSciNet] [Google Scholar]
  • Y. Yin, K. Stecke, M. Swink and I. Kaku, Lessons from seru production on manufacturing competitively in a high cost environment. J. Oper. Manag. 49 (2017) 67–76. [CrossRef] [Google Scholar]
  • Y. Yin, K. Stecke and D. Li, The evolution of production systems from Industry 2.0 through Industry 4.0. Int. J. Prod. Res. 56 (2018) 848–861. [CrossRef] [Google Scholar]
  • K. Ying and Y. Tsai, Minimising total cost for training and assigning multiskilled workers in seru production systems. Int. J. Prod. Res. 55 (2017) 2978–2989. [CrossRef] [Google Scholar]
  • Ö. Yılmaz, Operational strategies for seru production system: a bi-objective optimisation model and solution methods. Int. J. Prod. Res. 58 (2020) 3195–3219. [CrossRef] [Google Scholar]
  • Ö. Yılmaz, Attaining flexibility in seru production system by means of Shojinka: an optimization model and solution approaches. Comput. Oper. Res. 119 (2020) 104917. [CrossRef] [MathSciNet] [Google Scholar]
  • Y. Yu and J. Tang, Review of seru production. Front. Eng. Manag. 6 (2019) 183–192. [CrossRef] [MathSciNet] [Google Scholar]
  • Y. Yu, J. Gong, J. Tang, Y. Yin and I. Kaku, How to carry out assembly line–cell conversion? a discussion based on factor analysis of system performance improvements. Int. J. Prod. Res. 50 (2012) 5259–5280. [CrossRef] [Google Scholar]
  • Y. Yu, J. Tang, W. Sun, Y. Yin and I. Kaku, Combining local search into non-dominated sorting for multi-objective line-cell conversion problem. Int. J. Comput. Integr. Manuf. 26 (2013) 316–326. [CrossRef] [Google Scholar]
  • Y. Yu, J. Tang, W. Sun, Y. Yin and I. Kaku, Reducing worker(s) by converting assembly line into a pure cell system. Int. J. Prod. Econ. 145 (2013) 799–806. [CrossRef] [Google Scholar]
  • Y. Yu, J. Tang, J. Gong, Y. Yin and I. Kaku, Mathematical analysis and solutions for multi-objective line-cell conversion problem. Eur. J. Oper. Res. 236 (2014) 774–786. [CrossRef] [Google Scholar]
  • Y. Yu, S. Wang, J. Tang, I. Kaku and W. Sun, Complexity of line-seru conversion for different scheduling rules and two improved exact algorithms for the multi-objective optimization. SpringerPlus 5 (2016) 1–26. [CrossRef] [PubMed] [Google Scholar]
  • Y. Yu, W. Sun, J. Tang, I. Kaku and J. Wang, Line-seru conversion towards reducing worker(s) without increasing makespan: models, exact and meta-heuristic solutions. Int. J. Prod. Res. 55 (2017) 2990–3007. [CrossRef] [Google Scholar]
  • Y. Yu, W. Sun, J. Tang and J. Wang, Line-hybrid seru system conversion: models, complexities, properties, solutions and insights. Comput. Ind. Eng. 103 (2017) 282–299. [CrossRef] [Google Scholar]
  • Y. Yu, J. Wang, K. Ma and W. Sun, Seru system balancing: definition, formulation, and exact solution. Comput. Ind. Eng. 122 (2018) 318–325. [CrossRef] [Google Scholar]
  • M. Yuen, S. Ng and M. Leung, A competitive mechanism multi-objective particle swarm optimization algorithm and its application to signalized traffic problem. Cybern. Syst. 52 (2020) 73–104. [Google Scholar]
  • S. Zeng, Y. Wu and Y. Yu, Multi-skilled worker assignment in seru production system for the trade-off between production efficiency and workload fairness. Kybernetes 52 (2023) 3495–3518. [CrossRef] [Google Scholar]
  • X. Zhang, X. Zheng, R. Cheng, J. Qiu and Y. Jin, A competitive mechanism based multi-objective particle swarm optimizer with fast convergence. Inf. Sci. 427 (2018) 63–76. [CrossRef] [Google Scholar]
  • J. Zhang, H. Yamamoto, J. Sun and Y. Kajihara, A study of optimal assignment with different workers’ capacities for each process in a reset limited-cycle problem with multiple periods. Asian J. Manag. Sci. Appl. 6 (2021) 163–188. [Google Scholar]
  • Z. Zhang, X. Song, H. Huang, Y. Yin and B. Lev, Scheduling problem in seru production system considering DeJong’s learning effect and job splitting. Ann. Oper. Res. 312 (2022) 1119–1141. [CrossRef] [MathSciNet] [Google Scholar]
  • Z. Zhang, X. Song, X. Gong, Y. Yin, B. Lev and X. Zhou, An effective heuristic based on 3-opt strategy for seru scheduling problems with learning effect. Int. J. Prod. Res. 61 (2023) 1938–1954. [CrossRef] [Google Scholar]
  • E. Zitzler, M. Laumanns and L. Thiele, SPEA2: improving the strength Pareto evolutionary algorithm. TIK-Report 103 (2021). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.