Open Access
Issue |
RAIRO-Oper. Res.
Volume 58, Number 3, May-June 2024
|
|
---|---|---|
Page(s) | 2367 - 2378 | |
DOI | https://doi.org/10.1051/ro/2024098 | |
Published online | 18 June 2024 |
- G. Abay-Asmerom, R. Hammack, C. Larson and D. Taylor, Notes on the independence number in the cartesian product of graphs. Discuss. Math. Graph Theory 31 (2011) 25–35. [CrossRef] [MathSciNet] [Google Scholar]
- R.M. Barbosa, M.R. Cappelle and E.M.M. Coelho, Maximal independent sets in complementary prism graphs. Ars Comb. 137 (2018) 283–294. [Google Scholar]
- C. Berge, Graphs. North Holland, Amsterdam (1985). [Google Scholar]
- M. Blidia, M. Chellali, O. Favaron and N. Meddah, Maximal k-independent sets in graphs. Discuss. Math. Graph Theory 28 (2008) 151–163. [CrossRef] [MathSciNet] [Google Scholar]
- J.A. Bondy and U.S.R. Murty, Graph Theory with Applications. Macmillan, London (1976). [Google Scholar]
- B. Brešar and B. Zmazek, On the independence graph of a graph. Discrete Math. 272 (2003) 263–268. [CrossRef] [MathSciNet] [Google Scholar]
- P.P. Camargo, U.S. Souza and J.R. Nascimento, Remarks on k-clique, k-independent set and 2-contamination in complementary prisms. Int. J. Found. Comput. Sci. 32 (2021) 37–52. [CrossRef] [Google Scholar]
- Y. Caro and A. Hansberg, New approach to the k-independence number of a graph. Electron. J. Comb. 20 (2012) 33–49. [Google Scholar]
- M. Chellali, T. Haynes and L. Volkmann, k-independence stable graphs upon edge removal. Discuss. Math. Graph Theory 30 (2010) 265–274. [CrossRef] [MathSciNet] [Google Scholar]
- M. Chellali, O. Favaron, A. Hansberg and L. Volkmann, k-domination and k-independence in graphs: A survey. Graphs Combin. 28 (2012) 1–55. [Google Scholar]
- B.N. Clark, C.J. Colbourn and D.S. Johnson, Unit disk graphs. Discrete Math. 86 (1990) 165–177. [CrossRef] [MathSciNet] [Google Scholar]
- N. Dehgardi, S.M. Sheikholeslami, M. Valinavaz, H. Aram and L. Volkmann, Domination number, independent domination number and 2-independence number in trees. Discuss. Math. Graph Theory (2021) 39–49. [Google Scholar]
- M.A. Duarte, L. Penso, D. Rautenbach and U. dos Santos Souza, Complexity properties of complementary prisms. J. Comb. Optim. 33 (2017) 365–372. [CrossRef] [MathSciNet] [Google Scholar]
- O. Favaron, Graduate Course in the University of Blida (2005). [Google Scholar]
- O. Favaron, S.M. Hedetniemi, S.T. Hedetniemi and D.F. Rall, On k-dependent domination. Discrete Math. 249 (2002) 83–94. [CrossRef] [MathSciNet] [Google Scholar]
- J.F. Fink and M.S. Jacobson, n-Domination in graphs. In: Graph Theory with Applications to Algorithms and Computer Science (1985) 283–300. [Google Scholar]
- M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman & Co., New York, NY, USA (1979). [Google Scholar]
- D. Gonçalves, A. Pinlou, M. Rao and S. Thomassé, The domination number of grids. SIAM J. Discrete Math. 25 (2011) 1443–1453. [CrossRef] [MathSciNet] [Google Scholar]
- J. Hagauer and S. Klavžar, On independence numbers of the cartesian product of graphs. Ars Comb. 43 (1996) 149–158. [Google Scholar]
- R.H. Hammack, W. Imrich, S. Klavžar, W. Imrich and S. Klavžar, Handbook of Product Graphs, Vol. 2. CRC press, Boca Raton (2011). [CrossRef] [Google Scholar]
- T.W. Haynes, M.A. Henning, P.J. Slater and L.C. Merwe, The complementary product of two graphs. Bull. Inst. Combin. Appl. 51 (2007) 21–30. [MathSciNet] [Google Scholar]
- T.W. Haynes, M.A. Henning and L.C. van der Merwe, Domination and total domination in complementary prisms. J. Comb. Optim. 18 (2009) 23–37. [CrossRef] [MathSciNet] [Google Scholar]
- P. Hell, X. Yu and H. Zhou, Independence ratios of graph powers. Discrete Math. 127 (1994) 213–220. [CrossRef] [MathSciNet] [Google Scholar]
- M.S. Jacobson and K. Peters, Complexity questions for n-domination and related parameters. Congr. Numer. 68 (1989) 7–22. [MathSciNet] [Google Scholar]
- P. Jha and G. Slutzki, Independence numbers of product graphs. Appl. Math. Lett. 7 (1994) 91–94. [CrossRef] [MathSciNet] [Google Scholar]
- S. Kogan, New results on k-independence of graphs. Electron. J. Comb. 24 (2017) 2–15. [Google Scholar]
- Y. Mao, E. Cheng, Z. Wang and Z. Guo, The k-independence number of graph products. Art Discrete Appl. Math. 1 (2018) P1–01. [Google Scholar]
- S.P. Martin, J.S. Powell and D.F. Rall, On the independence number of the cartesian product of caterpillars. Ars Comb. 60 (2001) 73–84. [Google Scholar]
- O.S. Mortosa and M.R. Cappelle, k-independence on complementary prism graphs. Math. Contemp. 48 (2021) 211–220. [Google Scholar]
- O.S. Mortosa, M.R. Cappelle and E. Coelho, k-independência em prismas complementares é NP-completo. In: Anais do VII Encontro de Teoria da Computação. SBC (2022) 133–136. [CrossRef] [Google Scholar]
- J. Nešetřil, Representations of graphs by means of products and their complexity. In: Mathematical Foundations of Computer Science 1981: Proceedings, 10th Symposium Štrbské Pleso, Czechoslovakia August 31–September 4, 1981 10. Springer (1981) 94–102. [Google Scholar]
- N. Pleanmani, S. Panma and N. Nupo, On the independent coloring of graphs with applications to the independence number of cartesian product graphs. J. Math. 2023 (2023) 12. [CrossRef] [Google Scholar]
- A. Talon and M. Rao, The 2-domination and roman domination numbers of grid graphs. Discrete Math. Theor. Comput. Sci. 21 (2019). [Google Scholar]
- V.G. Vizing, The cartesian product of graphs. Vycisl. Sistemy 9 (1963) 33. [Google Scholar]
- Z. Wang, H. Liu and Y. Liu, Nordhaus–Gaddum-Type Results for the k-Independent Number of Graphs. J. Interconnect. Netw. 24 (2024) 2350007. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.