Open Access
Issue
RAIRO-Oper. Res.
Volume 58, Number 3, May-June 2024
Page(s) 2379 - 2391
DOI https://doi.org/10.1051/ro/2024110
Published online 18 June 2024
  • R. Barbosa and B. Hartnell, Some problems based on the relative sizes of the maximal independent sets in a graph. Congr. Numer. 01 (1998) 115–121. [Google Scholar]
  • R. Barbosa, M.R. Cappelle and D. Rautenbach, On graphs with maximal independent sets of few sizes, minimum degree at least 2, and girth at least 7. Discrete Math. 313 (2013) 1630–1635. [CrossRef] [MathSciNet] [Google Scholar]
  • J.A. Bondy and U.S.R. Murty, Graph Theory with Applications. Elsevier, New York (1976). [Google Scholar]
  • M.R. Cappelle and D. Rautenbach, Extending berge’s and favaron’s results about well-covered graphs. Discrete Math. 313 (2013) 2742–2747. [CrossRef] [MathSciNet] [Google Scholar]
  • M.R. Cappelle, M.C. Dias and V.G. Santos, Independence gap in graphs of girth at least 6. In: Anais do Simpósio Brasileiro de Pesquisa Operacional (2020). [Google Scholar]
  • Y. Caro, A. Sebőo and M. Tarsi, Recognizing greedy structures. J. Algorithms 20 (1996) 137–156. [CrossRef] [MathSciNet] [Google Scholar]
  • V. Chvátal and P.J. Slater, A note on well-covered graphs. Ann. Discrete Math. 55 (1993) 179–181. [CrossRef] [Google Scholar]
  • Z. Deniz, A classification of 1-well-covered graphs. Turk. J. Math. 45 (2021) 2817–2829. [CrossRef] [Google Scholar]
  • T. Ekim, D. Gözüpek, A. Hujdurović, and M. Milanič, On Almost Well-Covered Graphs of Girth at Least 6. Discrete Math. Theor. Comput. Sci. 20 (2018). [Google Scholar]
  • A. Finbow and B. Hartnell, A game related to covering by stars. Ars Comb. 16 (1983) 189–198. [Google Scholar]
  • A. Finbow, B. Hartnell and R.J. Nowakowski, A characterization of well-covered graphs of girth 5 or greater. J. Comb. Theory Ser. B 57 (1993) 44–68. [CrossRef] [Google Scholar]
  • A. Finbow, B. Hartnell and C. Whitehead, A characterization of graphs of girth eight or more with exactly two sizes of maximal independent sets. Discrete Math. 125 (1994) 153–167. [CrossRef] [MathSciNet] [Google Scholar]
  • B.L. Hartnell, Well-covered graphs. J. Comb. Math. Comb. Comput. 29 (1999) 107–115. [Google Scholar]
  • B.L. Hartnell and D. Rall, On graphs having maximal independent sets of exactly t distinct cardinalities. Graphs and Combin. 29 (2013) 519–525. [Google Scholar]
  • K. Kimura, M. Pournaki, S. Seyed Fakhari, N. Terai and S. Yassemi, A glimpse to most of the old and new results on very well-covered graphs from the viewpoint of commutative algebra. Res. Math. Sci. 9 (2022) 29. [CrossRef] [Google Scholar]
  • M.D. Plummer, Well-covered graphs. J. Comb. Theory 8 (1970) 91–98. [CrossRef] [Google Scholar]
  • M.D. Plummer, Well-covered graphs: a survey. Quaest. Math. 16 (1993) 253–287. [CrossRef] [Google Scholar]
  • G. Ravindra, Well-covered graphs. J. Comb. Inf. Syst. Sci. 2 (1977) 20–21. [Google Scholar]
  • R.S. Sankaranarayana and L.K. Stewart, Complexity results for well-covered graphs. J. Comb. Inf. Syst. Sci. (1997). [Google Scholar]
  • J. Staples, On Some Subclasses of Well-Covered Graphs. Ph.D. thesis, Vanderbilt University (1975). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.