Open Access
Issue
RAIRO-Oper. Res.
Volume 58, Number 3, May-June 2024
Page(s) 2569 - 2589
DOI https://doi.org/10.1051/ro/2024083
Published online 25 June 2024
  • A. Aghsami and F. Jolai, Equilibrium threshold strategies and social benefits in the fully observable Markovian queues with partial breakdowns and interruptible setup/closedown policy. Qual. Technol. Quant. Manage. 17 (2020) 685–722. [CrossRef] [Google Scholar]
  • A. Burnetas and A. Economou, Equilibrium customer strategies in a single server Markovian queue with setup times. Queueing Syst. 56 (2007) 213–228. [Google Scholar]
  • S.R. Chakravarthy, Analysis of MAP/PH1, PH2/1 queue with vacations and optional secondary services. Appl. Math. Modell. 37 (2013) 8886–8902. [CrossRef] [Google Scholar]
  • P. Chen and Y. Zhou, Equilibrium balking strategies in the single server queue with setup times and breakdowns. Oper. Res. 15 (2015) 213–231. [Google Scholar]
  • G. Choudhury, Some aspects of an M/G/1 queueing system with optional second service. Top 11 (2003) 141–150. [Google Scholar]
  • B.T. Doshi, Queueing systems with vacations – a survey. Queueing Syst. 1 (1986) 29–66. [CrossRef] [Google Scholar]
  • A. Economou and A. Manou, Equilibrium balking strategies for a clearing queueing system in alternating environment. Ann. Oper. Res. 208 (2013) 489–514. [CrossRef] [MathSciNet] [Google Scholar]
  • N.M. Edelson and D.K. Hilderbrand, Congestion tolls for Poisson queuing processes. Econ.: J. Econ. Soc. 43 (1975) 81–92. [Google Scholar]
  • S. Gao, Availability and reliability analysis of a retrial system with warm standbys and second optional repair service. Commun. Stat.-Theory Methods 52 (2023) 1039–1057. [CrossRef] [Google Scholar]
  • M. Ghorbani-Mandolakani and M.R. Salehi Rad, ML and Bayes estimation in a two-phase tandem queue with a second optional service and random feedback. Commun. Stat.-Theory Methods 45 (2016) 2576–2591. [CrossRef] [Google Scholar]
  • Y. Hao, J. Wang, Z. Wang and M. Yang, Equilibrium joining strategies in the M/M/1 queues with setup times under n-policy. J. Syst. Sci. Syst. Eng. 28 (2019) 141–153. [CrossRef] [Google Scholar]
  • R. Hassin, Rational Queueing. CRC Press, Boca Raton (2016). [Google Scholar]
  • R. Hassin and M. Haviv, To Queue or Not to Queue: Equilibrium Behavior in Queueing Systems. Vol. 59. Springer Science & Business Media (2003). [Google Scholar]
  • M. Haviv and L. Ravner, A survey of queueing systems with strategic timing of arrivals. Queueing Syst. 99 (2021) 163–198. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Jain and S. Kaur, Bernoulli vacation model for MX/G/1 unreliable server retrial queue with bernoulli feedback, balking and optional service. RAIRO-Oper. Res. 55 (2021) S2027–S2053. [Google Scholar]
  • S. Jin, H. Wu, W. Yue and Y. Takahashi, Performance evaluation and Nash equilibrium of a cloud architecture with a sleeping mechanism and an enrollment service. J. Ind. Manage. Optim. 16 (2020) 2407. [Google Scholar]
  • J.-C. Ke, C.-H. Wu and Z.G. Zhang, Recent developments in vacation queueing models: a short survey. Int. J. Oper. Res. 7 (2010) 3–8. [Google Scholar]
  • J.-C. Ke, C.-H. Wu and W.L. Pearn, Analysis of an infinite multi-server queue with an optional service. Comput. Ind. Eng. 65 (2013) 216–225. [CrossRef] [Google Scholar]
  • D.H. Lee, Optimal pricing strategies and customers’ equilibrium behavior in an unobservable M/M/1 queueing system with negative customers and repair. Math. Probl. Eng. 2017 (2017) 8910819. [Google Scholar]
  • K. Li and J. Wang, Equilibrium balking strategies in the single-server retrial queue with constant retrial rate and catastrophes. Qual. Technol. Quant. Manage. 18 (2021) 156–178. [CrossRef] [MathSciNet] [Google Scholar]
  • L. Li, J. Wang and F. Zhang, Equilibrium customer strategies in Markovian queues with partial breakdowns. Comput. Ind. Eng. 66 (2013) 751–757. [CrossRef] [Google Scholar]
  • X. Li, J. Wang and F. Zhang, New results on equilibrium balking strategies in the single-server queue with breakdowns and repairs. Appl. Math. Comput. 241 (2014) 380–388. [Google Scholar]
  • K.C. Madan, An M/G/1 queue with second optional service. Queueing Syst. 34 (2000) 37–46. [CrossRef] [Google Scholar]
  • S.P. Madheswari, B.K. Kumar and P. Suganthi, Analysis of M/G/1 retrial queues with second optional service and customer balking under two types of Bernoulli vacation schedule. RAIRO-Oper. Res. 53 (2019) 415–443. [Google Scholar]
  • F.A. Maraghi, K.C. Madan and K. Darby-Dowman, Batch arrival vacation queue with second optional service and random system breakdowns. J. Stat. Theory Pract. 4 (2010) 137–153. [CrossRef] [MathSciNet] [Google Scholar]
  • J. Medhi, A single server Poisson input queue with a second optional channel. Queueing Syst. 42 (2002) 239–242. [CrossRef] [MathSciNet] [Google Scholar]
  • P. Naor, The regulation of queue size by levying tolls. Econ.: J. Econ. Soc. 37 (1969) 15–24. [Google Scholar]
  • G. Panda and V. Goswami, Equilibrium joining strategies of positive customers in a Markovian queue with negative arrivals and working vacations. Methodol. Comput. Appl. Probab. 24 (2022) 1439–1466. [CrossRef] [MathSciNet] [Google Scholar]
  • K. Sun and J. Wang, Equilibrium joining strategies in the single server queues with negative customers. Int. J. Comput. Math. 96 (2019) 1169–1191. [CrossRef] [MathSciNet] [Google Scholar]
  • W. Sun, S. Li and N. Tian, Equilibrium mixed strategies of customers in an unobservable queue with multiple vacations. Qual. Technol. Quant. Manage. 10 (2013) 389–421. [CrossRef] [Google Scholar]
  • W. Sun, X. Xie, Z. Zhang and S. Li, Customer joining strategies in Markovian queues with B-limited service rule and multiple vacations. 4OR (2023). DOI: 10.1007/s10288-023-00542-8. [Google Scholar]
  • H. Takagi, Queueing Analysis: A Foundation of Performance Evaluation. Vol. I. Vacation And Priority Systems, Part I. Elsevier Science Pub. Co., North-Holland, Amsterdam (1991). [Google Scholar]
  • R. Tian, Social optimization and pricing strategies in unobservable queues with delayed multiple vacations. Math. Prob. Eng. 2019 (2019) 4684957. [Google Scholar]
  • N. Tian and Z.G. Zhang, Vacation Queueing Models: Theory and Applications. Vol. 93. Springer Science & Business Media (2006). [Google Scholar]
  • R. Tian, S. Su and Z.G. Zhang, Equilibrium and social optimality in queues with service rate and customers’ joining decisions. Qual. Technol. Quant. Manage. 21 (2024) 1–34. [CrossRef] [Google Scholar]
  • S. Upadhyaya, Queueing systems with vacation: an overview. Int. J. Math. Oper. Res. 9 (2016) 167–213. [CrossRef] [MathSciNet] [Google Scholar]
  • P. Vijaya Laxmi and K. Jyothsna, Cost and revenue analysis of an impatient customer queue with second optional service and working vacations. Commun. Stat.-Simul. Comput. 51 (2022) 4799–4814. [CrossRef] [Google Scholar]
  • J. Wang, An M/G/1 queue with second optional service and server breakdowns. Comput. Math. App. 47 (2004) 1713–1723. [Google Scholar]
  • K.-H. Wang, D.-Y. Yang and W.L. Pearn, Comparison of two randomized policy M/G/1 queues with second optional service, server breakdown and startup. J. Comput. Appl. Math. 234 (2010) 812–824. [CrossRef] [MathSciNet] [Google Scholar]
  • J. Wu, Z. Liu and Y. Peng, On the BMAP/G/1 G-queues with second optional service and multiple vacations. Appl. Math. Modell. 33 (2009) 4314–4325. [CrossRef] [Google Scholar]
  • B. Xu and X. Xu, Equilibrium strategic behavior of customers in the M/M/1 queue with partial failures and repairs. Oper. Res. 18 (2018) 273–292. [Google Scholar]
  • S. Yu, Z. Liu and J. Wu, Equilibrium strategies of the unobservable M/M/1 queue with balking and delayed repairs. Appl. Math. Comput. 290 (2016) 56–65. [MathSciNet] [Google Scholar]
  • D. Yue, W. Yue and X. Li, Analysis of a two-phase queueing system with impatient customers and multiple vacations, in The Tenth International Symposium on Operations Research and Its Applications (2011) 292–298. [Google Scholar]
  • D. Yue, R. Tian, W. Yue and Y. Qin, Equilibrium strategies in an M/M/1 queue with setup times and a single vacation policy, in 11th International Symposium on Operations Research and its Applications in Engineering, Technology and Management 2013. ISORA 2013. IET Digital Library (2013) 152–157. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.