Open Access
Issue
RAIRO-Oper. Res.
Volume 58, Number 4, July-August 2024
Page(s) 2797 - 2815
DOI https://doi.org/10.1051/ro/2024094
Published online 15 July 2024
  • A.L. Barabasi and R. Albert, Emergence of scaling in random networks. Science 286 (1999) 509–512. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • S. Boeke, National cyber crisis management: Different European approaches. Gov. Int. J. Policy Adm. Inst. 31 (2018) 449–464. [Google Scholar]
  • H.G. Brown, M.S. Poole and T.L. Rodgers, Interpersonal traits, complementarity, and trust in virtual collaboration. J. Manag. Inf. Syst. 20 (2004) 115–137. [CrossRef] [Google Scholar]
  • C.F. Camerer, Behavioral Game Theory: Experiments in Strategic Interaction. Princeton, Princeton University Press (2003). [Google Scholar]
  • Q.H. Chen and D.H. Shi, Markov chains theory for scale-free networks. Phys. A: Stat. Mech. Appl. 360 (2006) 121–133. [CrossRef] [Google Scholar]
  • J. Chen, T.H.Y. Chen and I. Vertinsky, Public-private partnerships for the development of disaster resilient communities. J. Conting. Crisis Manag. 21 (2013) 130–143. [CrossRef] [Google Scholar]
  • Y.J. Choi, The power of collaborative governance: The case of South Korea responding to COVID-19 pandemic. World Med. Health Policy 12 (2020) 430–442. [CrossRef] [Google Scholar]
  • T. Christensen and P. Laegreid, Balancing governance capacity and legitimacy: How the Norwegian government handled the COVID-19 crisis as a high performer. Public Adm. Rev. 80 (2020) 774–779. [CrossRef] [PubMed] [Google Scholar]
  • L.K. Comfort, Crisis management in hindsight: Cognition, communicatio, coordination, and control. Public Adm. Rev. 67 (2007) 189–197. [CrossRef] [Google Scholar]
  • V. Danesh, D. Neff and T.L. Jones, Can proactive rapid response team rounding improve surveillance and reduce unplanned escalations in care? A controlled before and after study. Int. J. Nurs. Stud. 91 (2019) 128–133. [CrossRef] [Google Scholar]
  • R. De Balanzo and N. Rodriguez-Planas, Crisis and reorganization in urban dynamics: the Barcelona, Spain, case study. Ecol. Soc. 23 (2018). [CrossRef] [Google Scholar]
  • Y. Freemark, Roosevelt island: Exception to a city in crisis. J. Urban Hist. 37 (2011) 355–383. [CrossRef] [Google Scholar]
  • X. Gao, Y.F. Song and X.R. Zhu, Integration and coordination: Advancing China’s fragmented e-government to holistic governance. Gov. Inf. Q. 30 (2013) 173–181. [CrossRef] [Google Scholar]
  • J. Grafton, M.A. Abernethy and A.M. Lillis, Organisational design choices in response to public sector reforms: A case study of mandated hospital networks. Manag. Account. Res. 22 (2011) 242–268. [CrossRef] [Google Scholar]
  • J.Y. Guan, Z.X. Wu, Z.G. Huang and Y.H. Wang, Cooperation influenced by the correlation degree of two-layered complex networks in evolutionary prisoner’s dilemma games. Chin. Phys. B 19 (2010). [Google Scholar]
  • M. Gupta, Social network behavior inappropriateness: the role of individual-level espoused national cultural values?. Inform. Technol. People 35 (2022) 879–898. [CrossRef] [Google Scholar]
  • C.Y. He, H. Liu, L. He, T. Lu and B. Li, More collaboration, less seriousness: Investigating new strategies for promoting youth engagement in government-generated videos during the COVID-19 pandemic in China. Comput. Hum. Behav. 126 (2022) 107019. [CrossRef] [Google Scholar]
  • J.H. Holland, Genetic algorithms. Sci. Am. 267 (1992) 66–72. [Google Scholar]
  • M. Howlett, M. Ramesh and A. Perl, Studying Public Policy: Policy Cycles and Policy Subsystems. Oxford, Oxford University Press (2003) 92. [Google Scholar]
  • K. Jarmai and H. Vogel-Poschl, Meaningful collaboration for responsible innovation. J. Responsible Innov. 7 (2020) 138–143. [CrossRef] [Google Scholar]
  • P. Jia, J.Y. Liu and Y. Fang, Modeling and analyzing malware propagation in social networks with heterogeneous infection rates. Physica A 507 (2018) 240–254. [CrossRef] [Google Scholar]
  • W. Johansen, H.K. Aggerholm and F. Frandsen, Entering new territory: A study of internal crisis management and crisis communication in organizations. Public Relat. Rev. 38 (2012) 270–279. [CrossRef] [Google Scholar]
  • E.J. Ki, Y. Pasadeos and T. Ertem-Eray, Growth of public relations research networks: a bibliometric analysis. J. Public Relat. Res. 31 (2019) 5–31. [CrossRef] [Google Scholar]
  • C.J. Koliba, R.M. Mills and A. Zia, Accountability in governance networks: An assessment of public, private, and nonprofit emergency management practices following hurricane katrina. Public Adm. Rev. 71 (2011) 210–220. [CrossRef] [Google Scholar]
  • G.H. Kruger, A.J. Shih, D.G. Hattingh and T.I. Van Niekerk, Intelligent machine agent architecture for adaptive control optimization of manufacturing processes. Adv. Eng. Inform. 25 (2011) 783–796. [CrossRef] [Google Scholar]
  • J.L. Liao, K.K. Wong, M.R.A. Khandaker and Z. Zheng, Optimizing cache placement for heterogeneous small cell networks. IEEE Commun. Lett. 21 (2017) 120–123. [CrossRef] [Google Scholar]
  • M. McGuire and C. Silvia, The effect of problem severity, managerial and organizational capacity, and agency structure on intergovernmental collaboration: Evidence from local emergency management. Public Adm. Rev. 70 (2010) 279–288. [CrossRef] [Google Scholar]
  • D.Y. Meng, W.L. Niu and X.L. Ding and L. Zhao, Network-to-network control over heterogeneous topologies: A dynamic graph approach. IEEE Trans. Syst. Man Cybern. Syst. 50 (2020) 1885–1896. [CrossRef] [Google Scholar]
  • K.D. Miller, M. Zhao and R.L. Calantone, Adding interpersonal learning and tacit knowledge to March’s exploration-exploitation model. Acad. Manag. J. 49 (2006) 709–722. [CrossRef] [Google Scholar]
  • P.J. Ren, Z.S. Xu and Z.N. Hao, Hesitant fuzzy thermodynamic method for emergency decision making based on prospect theory. IEEE Trans. Cybern. 47 (2017) 2531–2543. [CrossRef] [PubMed] [Google Scholar]
  • P.M. Salmon, A.S. Neville and D.P. Jenkins, Coordination during multi-agency emergency response: issue and solution. Disaster Prev. Manag. (2011). [Google Scholar]
  • F.C. Santos and J.M. Pacheco, Scale-free networks provide a unifying framework for the emergence of cooperation. Phys. Rev. Lett. 95 (2005) 98–104. [Google Scholar]
  • F.C. Santos and J.M. Pacheco, A new route to the evolution of cooperation. J. Evol. Biol. 19 (2006) 726–733. [CrossRef] [PubMed] [Google Scholar]
  • F.C. Santos, J.M. Pacheco and T. Lenaerts, Evolutionary dynamics of social dilemmas in structured heterogeneous populations. Proc. Natl. Acad. Sci. USA 103 (2006) 3490–3494. [CrossRef] [PubMed] [Google Scholar]
  • S. Shaonan, Z. Zicheng, J. Wenyan and H. Wang, Analysis of collaborative urban public crisis governance in complex system: A multi-agent stochastic evolutionary game approach. Sustain. Cities Soc. 91 (2023) 104418. [CrossRef] [Google Scholar]
  • S. Vanden Oord, N. Vanlaer and H. Marynissen, Network of networks: Preliminary lessons from the antwerp port authority on crisis management and network governance to deal with the COVID-19 pandemic. Public Adm. Rev. 80 (2020) 880–894. [CrossRef] [PubMed] [Google Scholar]
  • S. Vermicelli, L. Cricelli and M. Grimaldi, How can crowdsourcing help tackle the COVID-19 pandemic? An explorative overview of innovative collaborative practices. R&D Manag. 51 (2021) 183–194. [CrossRef] [Google Scholar]
  • J. Villodre and J.I. Criado, User roles for emergency management in social media: Understanding actors’ behavior during the 2018 Majorca Island flash floods. Gov. Inf. Q. 37 (2020). [Google Scholar]
  • W.L. Waugh and G. Streib, Collaboration and leadership for effective emergency management. Public Adm. Rev. 66 (2006) 131–140. [CrossRef] [Google Scholar]
  • H.C. White, S.A. Boorman and R.L. Breiger, Social structure from multiple networks. I. Block models of roles and positions. Am. J. Soc. 81 (1976) 730–780. [CrossRef] [Google Scholar]
  • Q. Yang, H. Zhou and X.X. Liu, Reconstruction of ER network from specific academic texts for the governance of MSW-NIMBY crisis in China. Complexity (2021). [Google Scholar]
  • Y. Yang, B. Shao and L.H. Jin, Collaborative governance of tower crane safety in the Chinese construction industry: A social network perspective. Buildings 12 (2022). [Google Scholar]
  • W.X. Yin, L. Xu and H.J. Wang, Resource management of video traffic over heterogeneous NOMA networks. IEEE Trans. Circuits Syst. Video Technol. 31 (2021) 3643–3654. [CrossRef] [Google Scholar]
  • G.J. Yun, J. Ghaboussi and A.S. Elnashai, Self-learning simulation method for inverse nonlinear modeling of cyclic behavior of connections. Comput. Methods Appl. Mech. Eng. 197 (2008) 2836–2857. [CrossRef] [Google Scholar]
  • M. Zambelli and Y. Demiris, Online multimodal ensemble learning using self-learned sensorimotor representations. IEEE Trans. Cogn. Dev. Syst. 9 (2017) 113–126. [CrossRef] [Google Scholar]
  • J.R. Zhang and R.L. Zhang, COVID-19 in China: Power, transparency and governance in public health crisis. Healthcare 8 (2020). [Google Scholar]
  • Y.Y. Zhu, C.Y. Xia and Z. Wang, Networked decision-making dynamics based on fair, extortionate and generous strategies in iterated public goods games. IEEE Trans. Netw. Sci. Eng. 9 (2022) 2450–2462. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.