Open Access
Issue
RAIRO-Oper. Res.
Volume 58, Number 4, July-August 2024
Page(s) 2817 - 2844
DOI https://doi.org/10.1051/ro/2024096
Published online 15 July 2024
  • P.A. Absil, R. Mahony and R. Sepulchre, Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton, NJ (2009). [Google Scholar]
  • D. Azagra, J. Ferrera and F. López-Mesas, Nonsmooth analysis and Hamilton-Jacobi equations on Riemannian manifolds. J. Funct. Anal. 220 (2005) 304–361. [CrossRef] [MathSciNet] [Google Scholar]
  • D. Azagra and J. Ferrera, Applications of proximal calculus to fixed point theory on Riemannian manifolds. Nonlinear Anal. 67 (2007) 154–174. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Barani and S. Hosseini, Characterization of solution sets of convex optimization problems in Riemannian manifolds. Arch. Math. 114 (2020) 215–225. [Google Scholar]
  • A. Barani, Generalized monotonicity and convexity for locally Lipschitz functions on Hadamard manifolds. Differ. Geom. Dyn. Syst. 15 (2013) 26–37. [MathSciNet] [Google Scholar]
  • G.C. Bento, J.X. Cruz Neto and L.V. Meirless, Proximal point algorithms for locally Lipschitz functions in multi-objective optimization on Hadamard manifolds. J. Optim. Theory Appl. 179 (2018) 37–52. [CrossRef] [MathSciNet] [Google Scholar]
  • J. Burke and M.C. Ferris, Characterization of solution set of convex programs. Oper. Res. Lett. 10 (1991) 57–60. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Chen and C. Fang, Vector variational inequality with pseudoconvexity on Hadamard manifolds. Optimization 65 (2016) 2067–2080. [CrossRef] [MathSciNet] [Google Scholar]
  • F.H. Clarke, Optimization and Nonsmooth Analysis. Wiley Interscience, New York (1983). [Google Scholar]
  • I. Chryssochoos and R.B. Vinter, Optimal control problems on manifolds: a dynamic programming approach. J. Math. Anal. Appl. 287 (2003) 118–140. [CrossRef] [MathSciNet] [Google Scholar]
  • T.D. Chuong and D.S. Kim, Nonsmooth semi-infinite multiobjective optimization problems. J. Optim. Theory Appl. 160 (2014) 748–762. [Google Scholar]
  • M. Farrokhiniya and A. Barani, Limiting subdifferential calculus and perturbed distance function in Riemannian manifolds. J. Global Optim. 77 (2020) 661–685. [CrossRef] [MathSciNet] [Google Scholar]
  • O.P. Ferreira, Proximal subgradient and a characterization of Lipschitz function on Riemannian manifolds. J. Math. Anal. Appl. 313 (2006) 587–597. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Ghosh, B.B. Upadhyay and I.M. Stancu-Minasian, Pareto efficiency criteria and duality for multiobjective fractional programming problems with equilibrium constraints on Hadamard Manifolds. Mathematics 11 (2023) 1–28. [Google Scholar]
  • A. Ghosh, B.B. Upadhyay and I.M. Stancu-Minasian, Constraint qualifications for multiobjective programming problems on Hadamard manifolds. Aust. J. Math. Anal. Appl. 20 (2023) 1–17. [MathSciNet] [Google Scholar]
  • A. Haar, Über lineare ungleichungen. Acta Sci. Math. (Szeged). 2 (1924) 1–14. [Google Scholar]
  • S. Hosseini and M.R. Pouryayevali, Generalized gradients and characterization of epi-Lipschitz sets in Riemannian manifolds. Nonlinear Anal. 74 (2011) 3884–3895. [CrossRef] [MathSciNet] [Google Scholar]
  • V. Ivanov, Characterizations of the solution sets of differentiable quasiconvex programming problems. J. Optim. Theory Appl. 181 (2019) 144–162. [CrossRef] [MathSciNet] [Google Scholar]
  • V. Jeyakumar and X.Q. Yang, On characterizing the solution sets of pseudolinear programs. J. Optim. Theory Appl. 87 (1995) 747–755. [CrossRef] [MathSciNet] [Google Scholar]
  • V. Jeyakumar, G.M. Lee and N. Dinh, Lagrange multiplier conditions characterizing the optimal solution sets of cone-constrained convex programs. J. Optim. Theory Appl. 123 (2004) 83–103. [CrossRef] [MathSciNet] [Google Scholar]
  • N. Kanzi, G. Caristi and A. Sadeghieh, Optimality conditions for semi-infinite programming problems involving generalized convexity. Optim. Lett. 13 (2019) 113–126. [CrossRef] [MathSciNet] [Google Scholar]
  • M.M. Karkhaneei and N. Mahdavi-Amiri, Nonconvex weak sharp minima on Riemannian manifolds. J. Optim. Theory Appl. 183 (2019) 85–104. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Kristály, C. Li, G. López-Acedo and A. Nicolae, What do ‘convexities’ imply on Hadamard manifolds?. J. Optim. Theory Appl. 170 (2016) 1068–1074. [CrossRef] [MathSciNet] [Google Scholar]
  • Y.S. Ledyaev and Q.J. Zhu, Nonsmooth analysis on smooth manifolds. Trans. Amer. Math. Soc. 359 (2007) 3687–3732. [CrossRef] [MathSciNet] [Google Scholar]
  • M.A. López and G. Still, Semi-infinite programming. Eur. J. Oper. Res. 180 (2007) 491–518. [CrossRef] [Google Scholar]
  • T. Maeda, Constraint qualifications in multiobjective optimization problems: differentiable case. J. Optim. Theory Appl. 80 (1994) 483–500. [Google Scholar]
  • O.L. Mangasarian, A simple characterization of solution sets of convex programs. Oper. Res. Lett. 7 (1988) 21–26. [Google Scholar]
  • O.L. Mangasarian, Nonlinear Programming. SIAM (1969). [Google Scholar]
  • S.K. Mishra, B.B. Upadhyay and L.T.H. An, Lagrange multiplier characterizations of solution sets of constrained nonsmooth pseudolinear optimization problems. J. Optim. Theory Appl. 160 (2014) 763–777. [CrossRef] [MathSciNet] [Google Scholar]
  • B.S. Mordukhovich, Variational Analysis and Generalized Differentiation. I. Basic Theory. Springer Science & Business Media (2006). [Google Scholar]
  • B.S. Mordukhovich, Variational Analysis and Generalized Differentiation. II. Applications. Springer Science & Business Media (2006). [Google Scholar]
  • Y.E. Nesterov and M.J. Todd, On the Riemannian geometry defined by self-concordant barrier and interior point methods. Found. Comput. Math. 2 (2002) 333–361. [CrossRef] [MathSciNet] [Google Scholar]
  • E.A. Papa Quiroz and P.R. Oliveira, Proximal point methods for quasiconvex and convex functions with Bregman distances on Hadamard manifolds. J. Convex Anal. 16 (2009) 49–69. [MathSciNet] [Google Scholar]
  • E.A. Papa Quiroz, E.M. Quispe and P.R. Oliveira, Steepest descent method with a generalized Armijo search for quasiconvex functions on Riemannian manifolds. J. Math. Anal. Appl. 341 (2008) 467–477. [CrossRef] [MathSciNet] [Google Scholar]
  • T. Rapcsák, Smooth Nonlinear Optimization in Rn. Springer Science & Business Media (2013). [Google Scholar]
  • U. Ravat and U.V. Shanbhag, On the characterization of solution sets of smooth and nonsmooth convex stochastic Nash games. SIAM J. Optim. 21 (2011) 1168–1199. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Treant¸ă, B.B. Upadhyay, A. Ghosh and K. Nanlaopon, Optimality conditions for multiobjective mathematical programming problems with equilibrium constraints on Hadamard manifolds. Mathematics 10 (2022) 1–20. [Google Scholar]
  • L.T. Tung, D.H. Tam and V. Singh, Characterization of solution sets of geodesic convex semi-infinite programming on Riemannian manifolds. Appl. Set-Valued Anal. Optim. 5 (2023) 1–18. [Google Scholar]
  • L.T. Tung and D.H. Tam, Optimality conditions and duality for multiobjective semi-infinite programming on Hadamard manifolds. Bull. Iranian Math. Soc. 48 (2022) 2191–2219. [CrossRef] [MathSciNet] [Google Scholar]
  • C. Udri¸ste, Convex Functions and Optimization Methods on Riemannian Manifolds. Springer Science & Business Media (2013). [Google Scholar]
  • B.B. Upadhyay, A. Ghosh, P. Mishra and S. Treant¸ă, Optimality conditions and duality for multiobjective semi-infinite programming problems on Hadamard manifolds using generalized geodesic convexity. RAIRO:RO 56 (2022) 2037–2065. [CrossRef] [EDP Sciences] [Google Scholar]
  • B.B. Upadhyay, I.M. Stancu-Minasian, P. Mishra and R.N. Mohapatra, On generalized vector variational inequalities and nonsmooth vector optimization problems on Hadamard manifolds involving geodesic approximate convexity. Adv. Nonlinear Var. Inequal. 25 (2022) 1–25. [Google Scholar]
  • B.B. Upadhyay, S. Treant¸ă and P. Mishra, On Minty variational principle for nonsmooth multiobjective optimization problems on Hadamard manifolds. Optimization 71 (2022) 1–19. [CrossRef] [MathSciNet] [Google Scholar]
  • B.B. Upadhyay, A. Ghosh and S. Treant¸ă, Optimality conditions and duality for nonsmooth multiobjective semi-infinite programming problems on Hadamard manifolds. Bull. Iranian Math. Soc. 49 (2023) 1–36. [CrossRef] [Google Scholar]
  • B.B. Upadhyay and A. Ghosh, On constraint qualifications for mathematical programming problems with vanishing constraints on Hadamard manifolds. J. Optim. Theory Appl. 199 (2023) 1–35. [CrossRef] [MathSciNet] [Google Scholar]
  • B.B Upadhyay, A. Ghosh and I.M. Stancu-Minasian, Second-order optimality condition and duality for multiobjective semi-infinite programming problems on Hadamard manifolds. Asia-Pac. J. Oper. Res. (2023). [Google Scholar]
  • B.B. Upadhyay, A. Ghosh and S. Treant¸ă, Optimality conditions and duality for nonsmooth multiobjective semi-infinite programming problems with vanishing constraints on Hadamard manifolds. J. Math. Anal. Appl. 531 (2023) 127785. [Google Scholar]
  • B.B. Upadhyay, A. Ghosh and S. Treant¸ă, Constraint qualifications and optimality criteria for nonsmooth multiobjective programming problems on Hadamard manifolds. J. Optim. Theory Appl. 200 (2024) 794–819. [CrossRef] [MathSciNet] [Google Scholar]
  • B.B. Upadhyay, A. Ghosh and S. Treant¸ă, Efficiency conditions and duality for multiobjective semi-infinite programming problems on Hadamard manifolds. J. Global Optim. (2024). [Google Scholar]
  • B.B. Upadhyay, I.M. Stancu-Minasian and P. Mishra, On relations between nonsmooth interval-valued multiobjective programming problems and generalized Stampacchia vector variational inequalities. Optimization 71 (2022) 2635–2659. [Google Scholar]
  • J. Wang, X. Wang, C. Li and J.C. Yao, Convergence analysis of gradient algorithms on Riemannian manifolds without curvature constraints and application to Riemannian mass. SIAM J. Optim. 31 (2021) 172–199. [CrossRef] [MathSciNet] [Google Scholar]
  • Z.L. Wu and S.Y. Wu, Characterizations of solution sets of convex programs and variational inequality problems. J. Optim. Theory Appl. 130 (2006) 341–360. [CrossRef] [Google Scholar]
  • K.Q. Zhao and X.M. Yang, Characterizations of the solution set for a class of nonsmooth optimization problems. Optim. Lett. 7 (2013) 685–694. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.