Open Access
Issue
RAIRO-Oper. Res.
Volume 58, Number 4, July-August 2024
Page(s) 2683 - 2707
DOI https://doi.org/10.1051/ro/2024007
Published online 02 July 2024
  • A. Alamri, Theory and methodology on the global optimal solution to a general reverse logistics inventory model for deteriorating items and time-varying rates. Comput. Ind. Eng. 60 (2011) 236–247. [CrossRef] [Google Scholar]
  • S.S. Ali, H. Barman, R. Kaur, H. Tomaskova and S.K. Roy, Multi-product multi echelon measurements of perishable supply chain: fuzzy non-linear programming approach. Mathematics 9 (2021) 2093. [CrossRef] [Google Scholar]
  • C. Bai and J. Sarkis, Integrating and extending data and decision tools for sustainable third-party reverse logistics provider selection. Comput. Oper. Res. 18 (2018) 30159-X. [Google Scholar]
  • H. Barman, M. Pervin and S.K. Roy, Impacts of green and preservation technology investments on a sustainable EPQ model during COVID-19 pandemic. RAIRO-Oper. Res. 56 (2022) 2245–2275. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • H. Barman, S.K. Roy, L. Sakalauskas and G.W. Weber, Inventory model involving reworking of faulty products with three carbon policies under neutrosophic environment. Adv. Eng. Inf. 57 (2023) 102081. [CrossRef] [Google Scholar]
  • E. Bazan, M.Y. Jaber and S. Zanoni, A review of mathematical inventory models for reverse logistics and the future of its modeling: An environmental perspective. Appl. Math. Model. 40 (2016) 4151–4178. [Google Scholar]
  • M. Bhattacharyya and S.S. Sana, A mathematical model on eco-friendly manufacturing system under probabilistic demand. RAIRO-Oper. Res. 53 (2019) 1899–1913. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • J. Chai, H. Li, C.-H. Lee, S.-B. Tsai and H. Chen, Shareholding operation of product remanufacturing – from a sustainable production perspective. RAIRO-Oper. Res. 55 (2021) S1529–S1549. [CrossRef] [EDP Sciences] [Google Scholar]
  • H.L. Chan, T.T. Cheung, T.M. Choi and J.B. Sheu, Sustainable successes in third-party food delivery operations in the digital platform era. Ann. Oper. Res. (2023). DOI: 10.1007/s10479-023-05266-w. [Google Scholar]
  • M.C. Cohen, R. Lobel and G. Perakis, The impact of demand uncertainty on consumer subsidies for green technology adoption. Manage. Sci. 62 (2015) 1225–1531. [Google Scholar]
  • T.K. Datta, Effect of green technology investment on a production-inventory system with carbon tax. Adv. Oper. Res. 2017 (2017) 4834839. [Google Scholar]
  • B.K. Dey, S. Pareek, M. Tayyab and B. Sarkar, Autonomation policy to control work-in-process inventory in a smart production system. Int. J. Prod. Res. 59 (2020) 1258–1280. [Google Scholar]
  • B.K. Dey, S. Bhuniya and B. Sarkar, Involvement of controllable lead time and variable demand for a smart manufacturing system under a supply chain management. Expert Syst. Appl. 184 (2021) 115464. [CrossRef] [Google Scholar]
  • P. Dutta, A. Mishra, S. Khandelwal and I. Katthawala, A multi objective optimization model for sustainable reverse logistics in Indian e-commerce market. J. Clean. Prod. 249 (2020) 119348. [CrossRef] [Google Scholar]
  • Y. Fan, M. Wang and L. Zhao, Production-inventory and emission reduction investment decision under carbon cap-and-trade policy. RAIRO-Oper. Res. 52 (2018) 1043–1067. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • M.R. Ghanbarzadeh-Shams, R.G. Yaghin and A.H. Sadeghi, A hybrid fuzzy multi-objective model for carpet production planning with reverse logistics under uncertainty. Soc. Econ. Planning Sci. 83 (2022) 101344. [CrossRef] [Google Scholar]
  • B.C. Giri, C. Mondal and T. Maiti, Optimal product quality and pricing strategy for a two-period closed-loop supply chain with retailer variable markup. RAIRO-Oper. Res. 53 (2019) 609–626. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • H. Golpîra, E. Najafi, M. Zandieh and S. Sadi-Nezhad, Robust bi-level optimization for green opportunistic supply chain network design problem against uncertainty and environmental risk. Comput. Ind. Eng. 107 (2017) 301–312. [CrossRef] [Google Scholar]
  • K. Govindan, M. Palaniappan, Q. Zhu and D. Kannan, Analysis of third party reverse logistics provider using interpretive structural modeling. Int. J. Prod. Econ. 140 (2012) 204–211. [CrossRef] [Google Scholar]
  • K. Govindan, H. Soleimani and D. Kannan, Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future. Eur. J. Oper. Res. 240 (2015) 603–626. [Google Scholar]
  • R. Guchhait and B. Sarkar, A decision-making problem for product outsourcing with flexible production under a global supply chain management. Int. J. Prod. Econ. 272 (2024) 109230. [CrossRef] [Google Scholar]
  • E.M. Guggeri, C. Ham, P. Silveyra, D.A. Rossit and P. Piñeyro, Goal programming and multi-criteria methods in remanufacturing and reverse logistics: Systematic literature review and survey. Comput. Ind. Eng. 185 (2023) 109587. [CrossRef] [Google Scholar]
  • S. Guo, B. Shen, T.M. Choi and S. Jung, A review on supply chain contracts in reverse logistics: supply chain structures and channel leaderships. J. Clean. Prod. 144 (2017) 387–402. [CrossRef] [Google Scholar]
  • M.S. Habib, O. Asghar, A. Hussain, M. Imran, M.P. Mughal and B. Sarkar, A robust possibilistic programming approach toward animal fat-based biodiesel supply chain network design under uncertain environment. J. Clean. Prod. 278 (2021) 122403. [CrossRef] [Google Scholar]
  • H. Hajaji, S. Yousefi, R.F. Saen and A. Hassanzadeh, Recommending investment opportunities given congestion by adaptive network data envelopment analysis model: Assessing sustainability of supply chains. RAIRO-Oper. Res. 55 (2021) S21–S49. [CrossRef] [EDP Sciences] [Google Scholar]
  • S. Hemapriya and R. Uthayakumar, Multi-constraints in an integrated inventory model with learning and screening errors under greenhouse gas emissions. Int. J. Syst. Sci. Oper. Logist. 7 (2020) 374–388. [Google Scholar]
  • S. Jain, S. Tiwari, L.E. Cárdenas-Barrón, A.A. Shaikh and S.R. Singh, A fuzzy imperfect production and repair inventory model with time dependent demand, production and repair rates under inflationary conditions. RAIRO-Oper. Res. 52 (2018) 217–239. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • M. Jain, N. Sharma and P. Singh, Sustainable inventory prediction with random defect and rework using bat algorithm. RAIRO-Oper. Res. 57 (2023) 481–501. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • S. Kar, K. Basu and B. Sarkar, Advertisement policy for dual-channel within emissions-controlled flexible production system. J. Retail. Consum. Serv. 71 (2023) 103077. [CrossRef] [Google Scholar]
  • M. Khan, M.Y. Jaber and M. Bonney, An economic order quantity (EOQ) for items with imperfect quality and inspection errors. Int. J. Prod. Econ. 133 (2011) 113–118. [Google Scholar]
  • M. Khan, M.Y. Jaber and A.R. Ahmad, An integrated supply chain model with errors in quality inspection and learning in production. Omega 42 (2014) 16–24. [Google Scholar]
  • S.A.R. Khan, Z. Yu, Z. Golpira, H.A. Sharif and A. Mardani, A state-of-the-art review and meta-analysis on sustainable supply chain management: Future research directions. J. Clean. Prod. 278 (2021) 123357. [CrossRef] [Google Scholar]
  • C. Krishnamoorthi and S. Panayappan, An inventory model for product life cycle (growth stage) with defective items and shortages. Int. J. Oper. Res. 19 (2014) 1–20. [CrossRef] [MathSciNet] [Google Scholar]
  • A.S.H. Kugele and B. Sarkar, Reducing carbon emissions of a multi-stage smart production for biofuel towards sustainable development. Alex. Eng. J. 70 (2023) 93–113. [CrossRef] [Google Scholar]
  • C.-J. Lu, C.-T. Yang and H.-F. Yen, Stackelberg game approach for sustainable production-inventory model with collaborative investment in technology for reducing carbon emissions. J. Clean. Prod. 270 (2020) 121963. [CrossRef] [Google Scholar]
  • S. Maheshwari, A. Kausar, A. Hasan and C.K. Jagg, Sustainable inventory model for a three-layer supply chain using optimal waste management. Int. J. Syst. Assur. Eng. Manag. 14 (2023) 216–235. [CrossRef] [Google Scholar]
  • H. Mahin, M. Moazzam, A.S. Khan and W. Ahmed, The impact of reverse logistics process coordination on third party relationship quality: A moderated mediation model for multichannel retailers in the fashion industry. J. Retail. Consum. Serv. 73 (2023) 103362. [CrossRef] [Google Scholar]
  • A.I. Malik, B. Sarkar, M.W. Iqbal, M. Ullah, I. Khan and M.B. Ramzan, Coordination supply chain management in flexible production system and service level constraint: a Nash bargaining model. Comput. Ind. Eng. 177 (2023) 109002. [CrossRef] [Google Scholar]
  • B. Marchi, S. Zanoni and M.Y. Jaber, Economic production quantity model with learning in production, quality, reliability and energy efficiency. Comput. Ind. Eng. 129 (2019) 502–511. [CrossRef] [Google Scholar]
  • A. Mardani, D. Kannan, R.E. Hooker, S. Ozkul, M. Alrasheedi and E.B. Tirkolaee, Evaluating of green and sustainable supply chain management using application of structural equation modelling: A systematic review of the state of the art literature and recommendations for future research. J. Clean. Prod. 249 (2020) 119383. [CrossRef] [Google Scholar]
  • E. Mehdizadeh, S.T.A. Niaki and M. Hemati, A bi-objective aggregate production planning problem with learning effect and machine deterioration: Modeling and solution. Comput. Oper. Res. 91 (2018) 21–36. [CrossRef] [MathSciNet] [Google Scholar]
  • U. Mishra, J.Z. Wu and B. Sarkar, Optimum sustainable inventory management with backorder and deterioration under controllable carbon emissions. J. Clean. Prod. 279 (2020) 123699. [Google Scholar]
  • A. Mishra, P. Dutta, S. Jayasankar, P. Jain and K. Mathiyazhagan, A review of reverse logistics and closed-loop supply chains in the perspective of circular economy. Benchmark. Int. J. 30 (2023) 975–1020. [CrossRef] [Google Scholar]
  • M. Mittal and B. Sarkar, Stochastic behavior of exchange rate on an international supply chain under random energy price. Math. Comput. Simul. 205 (2023) 232–250. [CrossRef] [Google Scholar]
  • M.E. Mohamed, M. Khan and L.E.C. Barroon, Algebraic modeling of a two level supply chain with defective items. RAIRO-Oper. Res. 52 (2018) 415–427. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • B. Mridha, S. Pareek, A. Goswami and B. Sarkar, Joint effects of production quality improvement of biofuel and carbon emissions towards a smart sustainable supply chain management. J. Clean. Prod. 386 (2023) 135629. [CrossRef] [Google Scholar]
  • B. Mridha, G.V. Ramana, S. Pareek and B. Sarkar, An efficient sustainable smart approach to biofuel production with emphasizing the environmental and energy aspects. Fuel 336 (2023) 126896. [CrossRef] [Google Scholar]
  • I. Nouira, Y. Frein and A.B. Hadj-Alouane, Optimization of manufacturing systems under environmental considerations for a greenness-dependent demand. Int. J. Prod. Econ. 150 (2014) 188–198. [Google Scholar]
  • A. Paul, M. Pervin, S.K. Roy, G.-W. Weber and A. Mirzazadeh, Effect of price-sensitive demand and default risk on optimal credit period and cycle time for a deteriorating inventory model. RAIRO-Oper. Res. 55 (2021) S2575–S2592. [CrossRef] [EDP Sciences] [Google Scholar]
  • A. Paul, M. Pervin, S.K. Roy, N. Maculan and G.-W. Weber, A green inventory model with the effect of carbon taxation. Ann. Oper. Res. 309 (2022) 233–248. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Pervin, S.K. Roy, P. Sannyashi and G.-W. Weber, Sustainable inventory model with environmental impact for non-instantaneous deteriorating items with composite demand. RAIRO-Oper. Res. 57 (2023) 237–261. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • S. Rani, R. Ali and A. Agarwal, Green supply chain inventory model for deteriorating items with variable demand under inflation. Int. J. Bus. Forecast. Market. Intell. 3 (2017) 50–77. [Google Scholar]
  • S. Saberi, J.M. Cruz, J. Sarkis and A. Nagurney, A competitive multiperiod supply chain network model with freight carriers and green technology investment option. Eur. J. Oper. Res. 266 (2017) 934–949. [Google Scholar]
  • S. Saha, B. Sarkar and M. Sarkar, Application of improved meta-heuristic algorithms for green preservation technology management to optimize dynamical investments and replenishment strategies. Math. Comput. Simul. 209 (2023) 426-450. [CrossRef] [Google Scholar]
  • S. Sanni, Z. Jovanoski and H.S. Sidhu, An economic order quantity model with reverse logistics program. Oper. Res. Perspect. 7 (2020) 100133. [MathSciNet] [Google Scholar]
  • B. Sarkar and R. Guchhait, Ramification of information asymmetry on a green supply chain management with the cap-trade, service, and vendor-managed inventory strategies. Electron. Commer. Res. Appl. 60 (2023) 101274. [CrossRef] [Google Scholar]
  • B. Sarkar, M. Tayyab, N. Kim and M.S. Habib, Optimal production delivery policies for supplier and manufacturer in a constrained closed-loop supply chain for returnable transport packaging through metaheuristic approach. Comput. Ind. Eng. 135 (2019) 987–1003. [Google Scholar]
  • B. Sarkar, M. Omair and N. Kim, A cooperative advertising collaboration policy in supply chain management under uncertain conditions. Appl. Soft Comput. 88 (2020) 105948. [CrossRef] [Google Scholar]
  • B. Sarkar, M. Sarkar, B. Ganguly and L.E. Cárdenas-Barrón, Combined effects of carbon emission and production quality improvement for fixed lifetime products in a sustainable supply chain management. Int. J. Prod. Econ. 231 (2021) 107867. [CrossRef] [Google Scholar]
  • B. Sarkar, M. Ullah and M. Sarkar, Environmental and economic sustainability through innovative green products by remanufacturing. J. Clean. Prod. 332 (2022) 129813. [CrossRef] [Google Scholar]
  • N. Saxena, S.R. Singh and S.S. Sana, A green supply chain model of vendor and buyer for remanufacturing. RAIRO-Oper. Res. 51 (2017) 1133–1150. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • N. Saxena, B. Sarkar and S.R. Singh, Selection of remanufacturing/production cycles with an alternative market: A perspective on waste management. J. Clean. Prod. 245 (2020) 118935. [CrossRef] [Google Scholar]
  • A. Sepehri, U. Mishra and B. Sarkar, A sustainable production-inventory model with imperfect quality under preservation technology and quality improvement investment. J. Clean. Prod. 310 (2021) 127332. [CrossRef] [Google Scholar]
  • N.H. Shah, U. Chaudhari and M.Y. Jani, Optimal control analysis for service, inventory and preservation technology investment. Int. J. Syst. Sci. Oper. Logist. 6 (2019) 130–142. [Google Scholar]
  • S. Sharma, S.R. Singh and M. Kumar, A reverse logistics inventory model with multiple production and remanufacturing batches under fuzzy environment. RAIRO-Oper. Res. 55 (2021) 571–588. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • S.R. Singh and N. Saxena, An optimal returned policy for a reverse logistics inventory model with backorders. Adv. Decis. Sci. 21 (2012) 386–598. [Google Scholar]
  • S.R. Singh and N. Saxena, A closed loop supply chain system with flexible manufacturing and reverse logistics operation under shortages for deteriorating items. Proc. Tech. 10 (2013) 330–339. [CrossRef] [Google Scholar]
  • S.K. Singh, A. Chauhan and B. Sarkar, Sustainable biodiesel supply chain model based on waste animal fat with subsidy and advertisement. J. Clean. Prod. 382 (2023) 134806. [CrossRef] [Google Scholar]
  • S.K. Singh, A. Chauhan and B. Sarkar, Strategy planning for sustainable biodiesel supply chain produced from waste animal fat. Sust. Prod. Consump. 44 (2024) 263–281. [Google Scholar]
  • H. Soleimani, Y. Chaharlang and H. Ghaderi, Collection and distribution of returned remanufactured products in a vehicle routing problem with pickup and delivery considering sustainable and green criteria. J. Clean. Prod. 172 (2018) 960–970. [CrossRef] [Google Scholar]
  • P. Suryawanshi, P. Dutta, L. Varun and G. Deepak, Sustainable and resilience planning for the supply chain of online hyperlocal grocery services. Sustain. Prod. Consum. 28 (2021) 496–518. [CrossRef] [Google Scholar]
  • A. Taleizadeh, S.T.A. Niaki and N. Alizadeh-Basban, Cost-sharing contract in a closed-loop supply chain considering carbon abatement, quality improvement effort, and pricing strategy. RAIRO-Oper. Res. 55 (2021) S2181–S2219. [CrossRef] [EDP Sciences] [Google Scholar]
  • M. Ullah and B. Sarkar, Recovery-channel selection in a hybrid manufacturing–remanufacturing production model with RFID and product quality. Int. J. Prod. Econ. 219 (2020) 360–374. [Google Scholar]
  • M. Ullah, I. Asghar, M. Zahid, M. Omair, A. AlArjani and B. Sarkar, Ramification of remanufacturing in a sustainable three-echelon closed-loop supply chain management for returnable products. J. Clean. Prod. 290 (2021) 125609. [CrossRef] [Google Scholar]
  • T.C. Weng and C.K. Chen, Competitive analysis of collection behavior between retailer and third-party in the reverse channel. RAIRO-Oper. Res. 50 (2016) 175–188. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • M. Xue and J. Zhang, Impacts of heterogeneous environment awareness and power structure on green supply chain. RAIRO-Oper. Res. 52 (2018) 143–157. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • D. Yadav, R. Kumari, N. Kumar and B. Sarkar, Reduction of waste and carbon emission through the selection of items with cross-price elasticity of demand to form a sustainable supply chain with preservation technology. J. Clean. Prod. 297 (2021) 126298. [CrossRef] [Google Scholar]
  • T. Yang, C.H. Ho, H.M. Lee and L.Y. Ouyang, Supplier–retailer production and inventory models with defective items and inspection errors in non-cooperative and cooperative environments. RAIRO-Oper. Res. 52 (2018) 453–471. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • N. Zarbakhshnia, H. Soleimani, M. Goh and S.S. Razavi, A novel multi-objective model for green forward and reverse logistics network design. J. Clean. Prod. 208 (2018) 1304–1316. [Google Scholar]
  • T. Zouadi, A. Yalaoui, M. Reghioui and K.E.E. Kadiri, Lot-sizing for production planning in a recovery system with returns. RAIRO-Oper. Res. 49 (2015) 123–142. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.