Open Access
Issue
RAIRO-Oper. Res.
Volume 58, Number 4, July-August 2024
Page(s) 3241 - 3262
DOI https://doi.org/10.1051/ro/2024087
Published online 08 August 2024
  • http://people.brunel.ac.uk/~mastjjb/jeb/info.html. [Google Scholar]
  • H. Alabboud, La programmation semi-définie combinée et comparée avec d’autres problèmes d’optimisation. Thèse de doctorat, Université de Havre (2007). [Google Scholar]
  • F. Barahona, On the computational complexity of Ising spin glass models. J. Phys. A: Math. General 15 (1982) 3241. [CrossRef] [Google Scholar]
  • S.J. Benson and Y. Ye, DSDP5: software for semidefinite programming. Technical Report ANL/MCS-P1289-0905, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL (2005). Submitted to ACM Transactions on Mathematical Software. [Google Scholar]
  • S.J. Benson and Y. Ye, DSDP5 User guide – software for semidefinite programming. Technical Report ANL/MCS-TM-277, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL (2005). http://www.mcs.anl.gov/benson/dsdp. [Google Scholar]
  • S.J. Benson, Y. Ye and X. Zhang, Solving large-scale sparse semidefinite programs for combinatorial optimization. SIAM J. Optim. 10 (2000) 443–461. [Google Scholar]
  • M. Brand, M. Masuda, N. Wehner and X.-H. Yu, Ant colony optimization algorithm for robot path planning, in 2010 International Conference on Computer Design and Applications. Vol. 3. IEEE (2010) V3-436. [Google Scholar]
  • V. Čern`y, Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. J. Optim. Theory App. 45 (1985) 41–51. [CrossRef] [Google Scholar]
  • J. Clark, T. West, J. Zammit, X. Guo, L. Mason and D. Russell, Towards real time multi-robot routing using quantum computing technologies, in Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region (2019) 111–119. [Google Scholar]
  • J. Cohen, A. Khan and C. Alexander, Portfolio optimization of 60 stocks using classical and quantum algorithms. Preprint arXiv:2008.08669 (2020). [Google Scholar]
  • K. Deb, Optimal design of a welded beam via genetic algorithms. AIAA J. 29 (1991) 2013–2015. [CrossRef] [Google Scholar]
  • A. El Chakik, A.R. El Sayed, H. Alabboud and A. Bakkach, An invariant descriptor map for 3D objects matching. Int. J. Eng. Technol. 9 (2020) 59–68. [CrossRef] [Google Scholar]
  • F. Glover, G.A. Kochenberger and B. Alidaee, Adaptive memory tabu search for binary quadratic programs. Manage. Sci. 44 (1998) 336–345. [CrossRef] [Google Scholar]
  • F. Glover, G. Kochenberger, M. Ma and Y. Du, Quantum bridge analytics II: network optimization and combinatorial chaining for asset exchange. Preprint arXiv:1911.03036 (2019). [Google Scholar]
  • D. Janaki Ram, T.H. Sreenivas and K. Ganapathy Subramaniam, Parallel simulated annealing algorithms. J. Parallel Distrib. Comput. 37 (1996) 207–212. [CrossRef] [Google Scholar]
  • M. Khorbatly, H. Dkhil, H. Alabboud and A. Yassine, A hybrid algorithm tabu search-grasp for wounded evacuation in disaster response. RAIRO-Oper. Res. 54 (2020) 19–36. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • S. Kirkpatrick, C.D. Gelatt Jr and M.P. Vecchi, Optimization by simulated annealing. Science 220 (1983) 671–680. [CrossRef] [MathSciNet] [Google Scholar]
  • G. Laporte, M. Gendreau, J.-Y. Potvin and F. Semet, Classical and modern heuristics for the vehicle routing problem. Int. Trans. Oper. Res. 7 (2000) 285–300. [Google Scholar]
  • A. Lodi, K. Allemand and T.M. Liebling, An evolutionary heuristic for quadratic 0−1 programming. Eur. J. Oper. Res. 119 (1999) 662–670. [CrossRef] [Google Scholar]
  • N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller and E. Teller, Equation of state calculations by fast computing machines. J. Chem. Phys. 21 (1953) 1087–1092. [Google Scholar]
  • A. Misevičius, Using iterated tabu search for the traveling salesman problem. Inf. Technol. Control 32 (2004) 2004. [Google Scholar]
  • L.G. Mitten, Branch-and-bound methods: general formulation and properties. Oper. Res. 18 (1970) 24–34. [CrossRef] [Google Scholar]
  • D.R. Morrison, S.H. Jacobson, J.J. Sauppe and E.C. Sewell, Branch-and-bound algorithms: a survey of recent advances in searching, branching, and pruning. Discrete Optim. 19 (2016) 79–102. [Google Scholar]
  • C.F.A. Negre, H. Ushijima-Mwesigwa and S.M. Mniszewski, Detecting multiple communities using quantum annealing on the D-Wave system. Plos One 15 (2020) e0227538. [CrossRef] [PubMed] [Google Scholar]
  • P.M. Pardalos and S. Jha, Complexity of uniqueness and local search in quadratic 0−1 programming. Oper. Res. Lett. 11 (1992) 119–123. [CrossRef] [MathSciNet] [Google Scholar]
  • T. Pham Dinh, N. Nguyen Canh and H.A. Le Thi, An efficient combined DCA and B&B using DC/SDP relaxation for globally solving binary quadratic programs. J. Global Optim. 48 (2010) 595–632. [CrossRef] [MathSciNet] [Google Scholar]
  • J. Sleeman, J. Dorband and M. Halem, A hybrid quantum enabled RBM advantage: convolutional autoencoders for quantum image compression and generative learning, in Quantum Information Science, Sensing, and Computation XII. Vol. 11391. SPIE (2020) 23–38. [Google Scholar]
  • D. Willsch, M. Willsch, H. De Raedt and K. Michielsen, Support vector machines on the D-Wave quantum annealer. Comput. Phys. Commun. 248 (2020) 107006. [CrossRef] [MathSciNet] [Google Scholar]
  • H. Wolkowicz, R. Saigal and L. Vandenberghe, Handbook of Semidefinite Programming. International Series in Operations Research & Management Science. Vol. 27. Kluwer Academic Publishers, Boston (2000). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.