Open Access
Issue |
RAIRO-Oper. Res.
Volume 58, Number 4, July-August 2024
|
|
---|---|---|
Page(s) | 3233 - 3240 | |
DOI | https://doi.org/10.1051/ro/2024126 | |
Published online | 08 August 2024 |
- A. Amahashi and M. Kano, On factors with given components. Discrete Math. 42 (1982) 1–6. [Google Scholar]
- A. Brouwer and W. Haemers, Spectra of Graphs. Springer, New York (2011). [Google Scholar]
- M. Fiedler and V. Nikiforov, Spectral radius and Hamiltonicity of graphs. Linear Algebra App. 432 (2010) 2170–2173. [CrossRef] [Google Scholar]
- A. Kaneko, A necessary and sufficient condition for the existence of a path factor every component of which is a path of length at least two. J. Comb. Theory Ser. B 88 (2003) 195–218. [Google Scholar]
- M. Kano and A. Saito, Star-factors with large component. Discrete Math. 312 (2012) 2005–2008. [Google Scholar]
- M. Kano, H. Lu and Q. Yu, Component factors with large components in graphs. Appl. Math. Lett. 23 (2010) 385–389. [Google Scholar]
- M. Las Vergnas, An extension of Tutte’s 1-factor theorem. Discrete Math. 23 (1978) 241–255. [CrossRef] [MathSciNet] [Google Scholar]
- Q. Li and K. Feng, On the largest eigenvalue of a graph. Acta Math. App. Sinica Chin. Ser. 2 (1979) 167–175. [Google Scholar]
- S. Li and S. Miao, Characterizing P≥2-factor and P≥2-factor covered graphs with respect to the size or the spectral radius. Discrete Math. 344 (2021) 112588. [Google Scholar]
- M. Liu, H. Lai and K. Das, Spectral results on Hamiltonian problem. Discrete Math. 342 (2019) 1718–1730. [CrossRef] [MathSciNet] [Google Scholar]
- X. Lv, A degree condition for graphs being fractional (a, b, k)-critical covered. Filomat 37 (2023) 3315–3320. [MathSciNet] [Google Scholar]
- S. Miao and S. Li, Characterizing star factors via the size, the spectral radius or the distance spectral radius of graphs. Discrete Appl. Math. 326 (2023) 17–32. [Google Scholar]
- V. Nikiforov, A spectral condition for odd cycles in graphs. Linear Algebra App. 428 (2008) 1492–1498. [CrossRef] [Google Scholar]
- O. Suil, Spectral radius and matchings in graphs. Linear Algebra App. 614 (2021) 316–324. [CrossRef] [Google Scholar]
- O. Suil, J.R. Park, J. Park and W. Zhang, Sharp spectral bounds for the edge-connectivity of regular graphs. Eur. J. Comb. 110 (2023) 103713. [CrossRef] [MathSciNet] [Google Scholar]
- S. Wang and W. Zhang, Degree conditions for the existence of a {P2, P5}-factor in a graph. RAIRO-Oper. Res. 57 (2023) 2231–2237. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- S. Wang and W. Zhang, Independence number, minimum degree and path-factors in graphs. Proc. Roman. Acad. Ser. A: Math. Phys. Tech. Sci. Inf. Sci. 23 (2022) 229–234. [Google Scholar]
- S. Wang and W. Zhang, Some results on star-factor deleted graphs. Filomat 38 (2024) 1101–1107. [MathSciNet] [Google Scholar]
- J. Wu, A sufficient condition for the existence of fractional (g, f, n)-critical covered graphs. Filomat 38 (2024) 2177–2183. [MathSciNet] [Google Scholar]
- J. Wu, Path-factor critical covered graphs and path-factor uniform graphs. RAIRO-Oper. Res. 56 (2022) 4317–4325. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- L. You, M. Yang, W. So and W. Xi, On the spectrum of an equitable quotient matrix and its application. Linear Algebra App. 577 (2019) 21–40. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou, A neighborhood union condition for fractional (a, b, k)-critical covered graphs. Discrete Appl. Math. 323 (2022) 343–348. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou, Path factors and neighborhoods of independent sets in graphs. Acta Math. Appl. Sin. Engl. Ser. 39 (2023) 232–238. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou, Some results on path-factor critical avoidable graphs. Discuss. Math. Graph Theory 43 (2023) 233–244. [Google Scholar]
- S. Zhou and Y. Zhang, Sufficient conditions for fractional [a, b]-deleted graphs. Indian J. Pure Appl. Math. (2024). DOI: 10.1007/s13226-024-00564-w. [Google Scholar]
- S. Zhou, Q. Bian and Q. Pan, Path factors in subgraphs. Discrete Appl. Math. 319 (2022) 183–191. [CrossRef] [Google Scholar]
- S. Zhou, J. Wu and Q. Bian, On path-factor critical deleted (or covered) graphs. Aequationes Math. 96 (2022) 795–802. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou, Q. Bian and Z. Sun, Two sufficient conditions for component factors in graphs. Discuss. Math. Graph Theory 43 (2023) 761–766. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou, Q. Pan and L. Xu, Isolated toughness for fractional (2, b, k)-critical covered graphs. Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 24 (2023) 11–18. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou, Z. Sun and Q. Bian, Isolated toughness and path-factor uniform graphs (II). Indian J. Pure Appl. Math. 54 (2023) 689–696. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou, Z. Sun and H. Liu, Some sufficient conditions for path-factor uniform graphs. Aequationes Math. 97 (2023) 489–500. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou, Z. Sun and H. Liu, D-index and Q-index for spanning trees with leaf degree at most k in graphs. Discrete Math. 347 (2024) 113927. [CrossRef] [Google Scholar]
- S. Zhou, Z. Sun and H. Liu, Distance signless Laplacian spectral radius for the existence of path-factors in graphs. Aequationes Math. 98 (2024) 727–737. [CrossRef] [MathSciNet] [Google Scholar]
- S. Zhou, Y. Xu and Z. Sun, Some results about star-factors in graphs. Contributions to Discrete Math., accept. [Google Scholar]
- S. Zhou, Y. Zhang and Z. Sun, The Aα-spectral radius for path-factors in graphs. Discrete Math. 347 (2024) 113940. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.