Open Access
Issue
RAIRO-Oper. Res.
Volume 58, Number 4, July-August 2024
Page(s) 3203 - 3231
DOI https://doi.org/10.1051/ro/2024114
Published online 08 August 2024
  • M. Adler, P.B. Gibbons and Y. Matias, Scheduling space-sharing for internet advertising. J. Sched. 5 (2002) 103–119. [CrossRef] [MathSciNet] [Google Scholar]
  • J.H. Ahrens and G. Finke, Merging and sorting applied to the zero-one knapsack problem. Oper. Res. 23 (1975) 1099–1109. [CrossRef] [Google Scholar]
  • A. Amiri and S. Menon, Scheduling web banner advertisements with multiple display frequencies. Proc. IEEE Trans. Syst. Man Cybern.-Part A: Syst. Hum. 36 (2006) 245–251. [CrossRef] [Google Scholar]
  • R.S. Barr and G.T. Ross, A linked list data structure for a binary knapsack algorithm. Technical report, Texas Univ at Austin Center for Cybernetic Studies (1975). [Google Scholar]
  • V. Boskamp, A. Knoops, F. Frasincar and A. Gabor, Maximizing revenue with allocation of multiple advertisements on a web banner. Comput. Oper. Res. 38 (2011) 1412–1424. [CrossRef] [MathSciNet] [Google Scholar]
  • R. Briggs and N. Hollis, Advertising on the web: is there response before click-through? J. Adv. Res. 37 (1997) 33–46. [Google Scholar]
  • C. Chekuri and S. Khanna, A polynomial time approximation scheme for the multiple knapsack problem. SIAM J. Comput. 35 (2005) 713–728. [CrossRef] [MathSciNet] [Google Scholar]
  • M.R. Da Silva, R.C. Schouery and L.L. Pedrosa, A polynomial-time approximation scheme for the maxspace advertisement problem. Electron. Notes Theor. Comput. Sci. 346 (2019) 699–710. [CrossRef] [Google Scholar]
  • M. Dawande, S. Kumar and C. Sriskandarajah, Performance bounds of algorithms for scheduling advertisements on a web page. Proc. J. Sched. 6 (2003) 373–394. [CrossRef] [Google Scholar]
  • B.C. Dean and M.X. Goemans, Improved approximation algorithms for minimum-space advertisement scheduling, in Proceedings of International Colloquium on Automata, Languages, and Programming (2003) 1138–1152. [Google Scholar]
  • M. Delorme, M. Iori and S. Martello, Bin packing and cutting stock problems: mathematical models and exact algorithms. Eur. J. Oper. Res. 255 (2016) 1–20. [CrossRef] [Google Scholar]
  • M. Delorme, M. Iori and S. Martello, Bpplib: a library for bin packing and cutting stock problems. Optim. Lett. 12 (2018) 235–250. [CrossRef] [MathSciNet] [Google Scholar]
  • J. Demšar, Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7 (2006) 1–30. [MathSciNet] [Google Scholar]
  • M. Dima and R. Ceterchi, Efficient range minimum queries using binary indexed trees. Olymp. Inform. 9 (2015) 39–44. [CrossRef] [Google Scholar]
  • E.D. Dolan and J.J. Moré, Benchmarking optimization software with performance profiles. Math. Program. 91 (2002) 201–213. [Google Scholar]
  • E. Falkenauer, A hybrid grouping genetic algorithm for bin packing. J. Heuristics 2 (1996) 5–30. [Google Scholar]
  • P.M. Fenwick, A new data structure for cumulative frequency tables. Softw.: Pract. Exper. 24 (1994) 327–336. [CrossRef] [Google Scholar]
  • T.A. Feo and M.G. Resende, Greedy randomized adaptive search procedures. J. Global Optim. 6 (1995) 109–133. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Freund and J.S. Naor, Approximating the advertisement placement problem, in Proceedings of International Conference on Integer Programming and Combinatorial Optimization (2002) 415–424. [Google Scholar]
  • M. Gendreau and J.-Y. Potvin, Handbook of Metaheuristics, vol. 2. Springer (2010). [CrossRef] [Google Scholar]
  • F. Glover, Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 13 (1986) 533–549. [Google Scholar]
  • R.L. Graham, E.L. Lawler, J.K. Lenstra and A.R. Kan, Optimization and approximation in deterministic sequencing and scheduling: a survey, in Annals of Discrete Mathematics. Elsevier (1979) 287–326. [Google Scholar]
  • H. Greenberg and R.L. Hegerich, A branch search algorithm for the knapsack problem. Manage. Sci. 16 (1970) 327–332. [CrossRef] [Google Scholar]
  • T. Gschwind and S. Irnich, Dual inequalities for stabilized column generation revisited. INFORMS J. Comput. 28 (2016) 175–194. [CrossRef] [MathSciNet] [Google Scholar]
  • D.S. Hochbaum and D.B. Shmoys, Using dual approximation algorithms for scheduling problems theoretical and practical results. J. ACM 34 (1987) 144–162. [CrossRef] [Google Scholar]
  • E. Horowitz and S. Sahni, Computing partitions with applications to the knapsack problem. J. ACM (JACM) 21 (1974) 277–292. [CrossRef] [Google Scholar]
  • IAB, Internet advertising revenue report: full year 2022 (2022). https://www.iab.com/wp-content/uploads/2023/04/IAB_PwC_Internet_Ad\vertising_Revenue_Report_2022.pdf. [Online; Accessed on: 2023-05-03]. [Google Scholar]
  • O.H. Ibarra and C.E. Kim, Fast approximation algorithms for the knapsack and sum of subset problems. J. ACM (JACM) 22 (1975) 463–468. [CrossRef] [Google Scholar]
  • H. Kellerer, A polynomial time approximation scheme for the multiple knapsack problem, in Randomization, Approximation, and Combinatorial Optimization. Algorithms and Techniques. Springer (1999) 51–62. [Google Scholar]
  • H. Kellerer, U. Pferschy and D. Pisinger, Introduction to np-completeness of knapsack problems, in Knapsack Problems. Springer (2004) 483–493. [Google Scholar]
  • S. Khuri, T. B¨ack and J. Heitkötter, The zero/one multiple knapsack problem and genetic algorithms, in Proceedings of the 1994 ACM Symposium on Applied Computing. ACM (1994) 188–193. [Google Scholar]
  • G. Kim and I. Moon, Online banner advertisement scheduling for advertising effectiveness. Comput. Ind. Eng. 140 (2020) 106226. [CrossRef] [Google Scholar]
  • P.J. Kolesar, A branch and bound algorithm for the knapsack problem. Manage. Sci. 13 (1967) 723–735. [CrossRef] [Google Scholar]
  • S. Kumar, Optimization Issues in Web and Mobile Advertising: Past and Future Trends. Springer (2015). [Google Scholar]
  • S. Kumar, V.S. Jacob and C. Sriskandarajah, Scheduling advertisements on a web page to maximize revenue. Eur. J. Oper. Res. 173 (2006) 1067–1089. [CrossRef] [MathSciNet] [Google Scholar]
  • E.L. Lawler, Fast approximation algorithms for knapsack problems. Math. Oper. Res. 4 (1979) 339–356. [CrossRef] [Google Scholar]
  • M. López-Ibáñez, L.P. Cáceres, J. Dubois-Lacoste, T. Stützle and M. Birattari, The irace package: User guide. IRIDIA, Université Libre de Bruxelles, Belgium, Tech. Rep. TR/IRIDIA/2016-004 (2016). [Google Scholar]
  • B. Mangold, Learning Google AdWords and Google Analytics. Loves Data (2018). [Google Scholar]
  • S. Martello and P. Toth, An upper bound for the zero-one knapsack problem and a branch and bound algorithm. Eur. J. Oper. Res. 1 (1977) 169–175. [CrossRef] [Google Scholar]
  • N. Mladenović and P. Hansen, Variable neighborhood search. Comput. Oper. Res. 24 (1997) 1097–1100. [Google Scholar]
  • R.M. Nauss, An efficient algorithm for the 0-1 knapsack problem. Manage. Sci. 23 (1976) 27–31. [CrossRef] [Google Scholar]
  • J.E. Schoenfield, Fast, exact solution of open bin packing problems without linear programming. Draft, US Army Space and Missile Defense Command, Huntsville, Alabama, USA (2002). [Google Scholar]
  • A. Scholl, R. Klein and C. Jürgens, Bison: a fast hybrid procedure for exactly solving the one-dimensional bin packing problem. Comput. Oper. Res. 24 (1997) 627–645. [CrossRef] [Google Scholar]
  • P. Schwerin and G. W¨ascher, The bin-packing problem: a problem generator and some numerical experiments with ffd packing and mtp. Int. Trans. Oper. Res. 4 (1997) 377–389. [Google Scholar]
  • P. Toth, Dynamic programming algorithms for the zero-one knapsack problem. Computing 25 (1980) 29–45. [CrossRef] [MathSciNet] [Google Scholar]
  • J.D. Ullman, Np-complete scheduling problems. J. Comput. Syst. Sci. 10 (1975) 384–393. [CrossRef] [Google Scholar]
  • V.V. Vazirani, Approximation Algorithms. Springer Berlin Heidelberg (2003). ISBN 9783642084690, 9783662045657. [CrossRef] [Google Scholar]
  • G. W¨ascher and T. Gau, Heuristics for the integer one-dimensional cutting stock problem: a computational study. Oper.-Res.-Spektrum 18 (1996) 131–144. [CrossRef] [Google Scholar]
  • A.A. Zoltners, A direct descent binary knapsack algorithm. J. ACM (JACM) 25 (1978) 304–311. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.