Open Access
Issue |
RAIRO-Oper. Res.
Volume 58, Number 4, July-August 2024
|
|
---|---|---|
Page(s) | 3189 - 3202 | |
DOI | https://doi.org/10.1051/ro/2024119 | |
Published online | 08 August 2024 |
- N.K. Al-Mezeini, A. Oukil and A.M. Al-Ismaili, Investigating the efficiency of greenhouse production in Oman: a two-stage approach based on Data Envelopment Analysis and double bootstrapping, J. Clean. Prod. 247 (2020) 119160. [CrossRef] [Google Scholar]
- A. Amirteimoori, T. Allahviranloo, M. Zadmirzaei and F. Hasanzadeh, On the environmental performance analysis: A combined fuzzy data envelopment analysis and artificial intelligence algorithms. Expert Syst. App. 224 (2023) 119953. [CrossRef] [Google Scholar]
- A. Amirteimoori, B.K. Sahoo and S. Mehdizadeh, Data envelopment analysis for scale elasticity measurement in the stochastic case: with an application to Indian banking. Finan. Innov. 9 (2023) 31. [CrossRef] [Google Scholar]
- R.D. Banker, Maximum likelihood, consistency and data envelopment analysis: a statistical foundation. Manage. Sci. 39 (1993) 1265–1273. [CrossRef] [Google Scholar]
- R.D. Banker, A. Charnes and W.W. Cooper, Models for the estimation of technical and scale inefficiencies in data envelopment analysis. Manage. Sci. 30 (1984) 1078–1092. [CrossRef] [Google Scholar]
- R.D. Banker, A. Amirteimoori and R.P. Sinha, An integrated Data Envelopment Analysis and generalized additive model for assessing managerial ability with application to the insurance industry, Decis. Anal. J. 4 (2022) 100115. [Google Scholar]
- A.S. Camanho and R.G. Dyson, A generalization of the Farrell cost-efficiency measure applicable to non-fully competitive settings. Omega 36 (2008) 147–162. [CrossRef] [Google Scholar]
- V. Charles, M. Kumar and S. Irene Kavitha, Measuring the efficiency of assembled printed circuit boards with undesirable outputs using data envelopment analysis. Int. J. Prod. Econ. 136 (2012) 194–206. [CrossRef] [Google Scholar]
- A. Charnes, W.W. Cooper and E. Rhodes, Measuring the efficiency of decision-making units. Eur. J. Oper. Res. 2 (1978) 429–444. [Google Scholar]
- Y. Chen and L. Liu, Improving eco-efficiency in coal mining area for sustainability development: an emergy and super-efficiency SBM-DEA with undesirable output. J. Clean. Prod. 339 (2022) 130701. [CrossRef] [Google Scholar]
- W.W. Cooper, Z. Huang, V. Lelas, S.X. Li and O.B. Olesen, Chance constrained programming formulations for stochastic characterizations of efficiency and dominance in DEA. J. Prod. Anal. 9 (1998) 53–79. [CrossRef] [Google Scholar]
- W.W. Cooper, H. Deng, Z. Huang and S.X. Li, Chance constrained programming approaches to congestion in stochastic data envelopment analysis. Eur. J. Oper. Res. 155 (2004) 487–501. [Google Scholar]
- W.W. Cooper, Z. Huang and S.X. Li, Chance-constrained DEA, in Handbook on Data Envelopment Analysis. Springer, Boston, MA (2011) 211–240. [Google Scholar]
- A. Emrouznejad, B.R. Parker and G. Tavares, Evaluation of research in efficiency and productivity: a survey and analysis of the first 30 years of scholarly literature in DEA. Soc.-Econ. Planning Sci. 42 (2008) 151-157. [CrossRef] [Google Scholar]
- R. F¨are and S. Grosskopf, Non-parametric productivity analysis with undesirable outputs. Am. J. Agric. Econ. 85 (2003) 1070–1074. [CrossRef] [Google Scholar]
- M.J. Farrell, The measurement of productive efficiency. J. R. Stat. Soc. (Ser. A) 120 (1957) 253–90. [CrossRef] [Google Scholar]
- A. Hailu and T.S. Veeman, Non-parametric productivity analysis with undesirable outputs: an application to the Canadian Pulp and paper industry. Am. J. Agric. Econ. 83 (2001) 605–616. [CrossRef] [Google Scholar]
- Z. Hua and Y. Bian, DEA with undesirable factors, in Modeling Data Irregularities and Structural Complexities in Data Envelopment Analysis, edited by J. Zhu and W.D. Cook. Springer, Boston, MA (2007). [Google Scholar]
- Z. Huang and S.X. Li, Stochastic DEA models with different types of input-output disturbances. J. Prod. Anal. 15 (2001) 95–113. [CrossRef] [Google Scholar]
- C. Kao and S.T. Liu, Stochastic efficiency measures for production units with correlated data. Eur. J. Oper. Res. 273 (2019) 278-287. [CrossRef] [Google Scholar]
- S. Kordrostami, A. Amirteimoori, F. Seihani Parashkouh, M. Mahboubi and M. Jahani Sayyad Noveiri, Weak Disposability of input and output in a nonparametric production analysis. Iran. Econ. Rev. 25 (2021) 551–565. [Google Scholar]
- T. Kuosmanen, Weak disposability in nonparametric production analysis with undesirable outputs. Am. J. Agric. Econ. 87 (2005) 1077–1082. [CrossRef] [Google Scholar]
- K.C. Land, C.A.K. Lovell and S. Thore, Productive efficiency under capitalism and state socialism: an empirical inquiry using chance-constrained data envelopment analysis. Technol. Forecasting Soc. Change 46 (1994) 139–152. [CrossRef] [Google Scholar]
- W.B. Liu, W. Meng, X.X. Li and D.Q. Zhang, DEA models with undesirable inputs and outputs. Ann. Oper. Res. 173 (2010) 177–194. [CrossRef] [MathSciNet] [Google Scholar]
- M. Mahdiloo, A.H. Jafarzadeh, R. Farzipoor Saen, Y. Wu and J. Rice, Modelling undesirable outputs in multiple objective data envelopment analysis. J. Oper. Res. Soc. 69 (2018) 1903–1919. [CrossRef] [Google Scholar]
- O.B. Olesen, Comparing and combining two approaches for chance-constrained DEA. J. Prod. Anal. 26 (2006) 103–119. [CrossRef] [Google Scholar]
- O.B. Olesen and N.C. Petersen, Stochastic data envelopment analysis – a review. Eur. J. Oper. Res. 251 (2016) 2–21. [Google Scholar]
- O.B. Olesen and N.C. Petersen, Foundation of chance constrained data envelopment analysis for Pareto-Koopmann efficient production possibility sets, in International DEA Symposium 2000, Measurement and Improvement in the 21st Century. The University of Queensland (2000) 313–349. [Google Scholar]
- A. Oukil, N. Channouf and A. Al-Zaidi, Performance evaluation of the hotel industry in an emerging tourism destination: the case of Oman. J. Hospitality Tourism Manage. 29 (2016) 60–68. [CrossRef] [Google Scholar]
- Q. Qin, Y. Jiao, X. Gan and Y. Liu, Environmental efficiency and market segmentation: an empirical analysis of China’s thermal power industry. J. Clean. Prod. 242 (2020) 118560. [CrossRef] [Google Scholar]
- Y. Qu, J. Li and S. Wang, Green total factor productivity measurement of industrial enterprises in Zhejiang Province, China: a DEA model with undesirable output approach. Energy Rep. 8 (2022) 307–317. [CrossRef] [Google Scholar]
- K. Rashidi and R. Farzipoor Saen, Measuring eco-efficiency based on green indicators and potentials in energy saving and undesirable output abatement. Energy Econ. 50 (2015) 18–26. [Google Scholar]
- B.K. Sahoo and K. Tone, Non-parametric measurement of economies of scale and scope in non-competitive environment with price uncertainty. Omega 41 (2013) 97–111. [CrossRef] [Google Scholar]
- L. Seiford and J. Zhu, Modeling undesirable factors in efficiency evaluation. Eur. J. Oper. Res. 42 (2002) 16–20. [CrossRef] [Google Scholar]
- J.K. Sengupta, Transformations in stochastic DEA models. J. Econ. 46 (1990) 109–123. [CrossRef] [Google Scholar]
- J.K. Sengupta, Dynamic and Stochastic Efficiency Analysis: Economics of Data Envelopment Analysis. World Scientific, Singapore (2000). [Google Scholar]
- R.W. Shephard, Theory of Cost and Production Functions. Princeton University Press, Princeton (1970). [Google Scholar]
- L. Simar and P.W. Wilson, Sensitivity analysis of efficiency scores: How to bootstrap in nonparametric frontier models. Manage. Sci. 44 (1998) 49–61. [CrossRef] [Google Scholar]
- T. Sueyoshi and M. Goto, DEA radial and non-radial models for unified efficiency under natural and managerial disposability: theoretical extension by strong complementary slackness conditions. Energy Econ. 34 (2012) 700–713. [CrossRef] [Google Scholar]
- T. Sueyoshi, M. Goto and M.A. Snell, DEA environmental assessment: measurement of damages to scale with unified efficiency under managerial disposability or environmental efficiency. Appl. Math. Modell. 37 (2013) 7300–7314. [CrossRef] [Google Scholar]
- G. Wei, J. Chen and J. Wang, Stochastic efficiency analysis with a reliability consideration. Omega 48 (2014) 1–9. [CrossRef] [Google Scholar]
- A. Zanella, A. Camanho and T.G. Dias, Undesirable outputs and weighting schemes in composite indicators based on data envelopment analysis. Eur. J. Oper. Res. 245 (2015) 517–530. [CrossRef] [Google Scholar]
- P. Zhou, B.W. Ang and K.L. Poh, A survey of data envelopment analysis in energy and environmental studies. Eur. J. Oper. Res. 189 (2008) 1–18. [CrossRef] [Google Scholar]
- Z. Zhou, G. Xu, C. Wang and J. Wu, Modeling undesirable output with a DEA approach based on an exponential transformation: an application to measure the energy efficiency of Chinese industry. J. Clean. Prod. 236 (2019) 117717. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.