Open Access
Issue
RAIRO-Oper. Res.
Volume 58, Number 4, July-August 2024
Page(s) 3171 - 3188
DOI https://doi.org/10.1051/ro/2024121
Published online 08 August 2024
  • AMPL Optimization Inc, AMPL. https://ampl.com (2023). [Google Scholar]
  • W.C. Babcock, Intermodulation interference in radio systems frequency of occurrence and control by channel selection. Bell Syst. Tech. J. 32 (1953) 63–73. [CrossRef] [Google Scholar]
  • E. Balas, S. Ceria and G. Cornuéjols, A lift-and-project cutting plane algorithm for mixed 0–1 programs. Math. Program. 58 (1993) 295–324. [CrossRef] [Google Scholar]
  • S. Basu, R. Pollack and M.-F. Roy, Algorithms in Real Algebraic Geometry. Springer Berlin Heidelberg (2006). [Google Scholar]
  • G. Bloom and S. Golomb, Applications of numbered undirected graphs. Proc. IEEE 65 (1977) 562–570. [CrossRef] [Google Scholar]
  • R.H. Byrd, J. Nocedal and R.A. Waltz, Knitro: An Integrated Package for Nonlinear Optimization. (2006) 35–59. [Google Scholar]
  • D. Cox, J. Little and D. O’Shea, Using Algebraic Geometry, 2nd edition. Springer (2004). [Google Scholar]
  • A. Dimitromanolakis, Analysis of the golomb ruler and the sidon set problems, and determination of large, near-optimal golomb rulers. Master’s thesis, Department of Electronic and Computer Engineering, Technical University of Crete (2002). [Google Scholar]
  • I. Dotú and P. Van Hentenryck, A simple hybrid evolutionary algorithm for finding golomb rulers. In Vol. 3 2005 IEEE Congress on Evolutionary Computation. IEEE (2005) 2018–2023. [CrossRef] [Google Scholar]
  • K. Drakakis, A review of the available construction methods for golomb rulers. Adv. Math. Commun. 3 (2009) 235–250. [CrossRef] [MathSciNet] [Google Scholar]
  • K. Drakakis, R. Gow and L. O’Carroll, On some properties of costas arrays generated via finite fields. In: 2006 40th Annual Conference on Information Sciences and Systems. IEEE (2006) 801–805. [CrossRef] [Google Scholar]
  • P. Duxbury, C. Lavor and L.L. de Salles-Neto, A conjecture on a continuous optimization model for the golomb ruler problem. RAIRO:RO 55 (2021) 2241–2246. [CrossRef] [EDP Sciences] [Google Scholar]
  • P. Galinier, A Constraint-Based Approach to the Golomb Ruler Problem. Université de Montréal, Centre de recherche sur les transports (2003). [Google Scholar]
  • Gurobi Optimization, LLC, Gurobi Optimizer Reference Manual. https://www.gurobi.com (2023). [Google Scholar]
  • A. Khajavirad and N.V. Sahinidis, A hybrid lp/nlp paradigm for global optimization relaxations. Math. Program. Comput. 10 (2018) 383–421. [CrossRef] [MathSciNet] [Google Scholar]
  • B. Kocuk and W.-J. van Hoeve, A Computational Comparison of Optimization Methods for the Golomb Ruler Problem. (2019) 409–425. [Google Scholar]
  • J.B. Lasserre, An Explicit Exact sdp Relaxation for Nonlinear 0–1 Programs. (2001) 293–303. [Google Scholar]
  • T. Liu and C. Luo, The proof of a conjecture for a continuos golumb ruler model. DOI: https://doi.org/10.20944/preprints202211.0027.v2 (2022). [Google Scholar]
  • R. Lorentzen and R. Nilsen, Application of linear programming to the optimal difference triangle set problem. IEEE Trans. Inf. Theory 37 (1991) 1486–1488. [CrossRef] [Google Scholar]
  • L. Lovász and A. Schrijver, Cones of matrices and set-functions and 0–1 optimization. SIAM J. Optim. 1 (1991) 166–190. [CrossRef] [MathSciNet] [Google Scholar]
  • G.P. McCormick, Computability of global solutions to factorable nonconvex programs: part i - convex underestimating problems. Math. Program. 10 (1976) 147–175. [CrossRef] [Google Scholar]
  • C. Meyer and B. Jaumard, Equivalence of some lp-based lower bounds for the golomb ruler problem. Discrete Appl. Math. 154 (2006) 120–144. [Google Scholar]
  • C. Meyer and P.A. Papakonstantinou, On the complexity of constructing golomb rulers. Discrete Appl. Math. 157 (2009) 738–748. [Google Scholar]
  • M. Minoux and H. Ouzia, DRL*: A hierarchy of strong block-decomposable linear relaxations for 0–1 mips. Discrete Appl. Math. 158 (2010) 2031–2048. [Google Scholar]
  • L. Monique, A comparison of the sherali-adams, lovász-schrijver, and lasserre relaxations for 0–1 programming. Math. Oper. Res. 28 (2003) 470–496. [CrossRef] [MathSciNet] [Google Scholar]
  • C.A.M. Ojeda, D.F.D. Urbano and C.A.T. Solarte, Near-optimal g-golomb rulers. IEEE Access 9 (2021) 65482–65489. [CrossRef] [Google Scholar]
  • H. Ouzia, Two new reformulation convexification based hierarchies for 0–1 mips. Adv. Oper. Res. 2015 (2015) 1–13. [Google Scholar]
  • S. Prestwich, Trading completeness for scalability: Hybrid search for cliques and rulers. In: Proceedings of the Third International Workshop on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems. (2001) 159–174. [Google Scholar]
  • D.M.G. Robert Fourer and B.W. Kernighan, A modeling language for mathematical programming. Manag. Sci. 36 (1990) 519–554. [CrossRef] [Google Scholar]
  • J. Robinson and A. Bernstein, A class of binary recurrent codes with limited error propagation. IEEE Trans. Inf. Theory 13 (1967) 106–113. [CrossRef] [Google Scholar]
  • J. Shearer, Some new optimum golomb rulers. IEEE Trans. Inf. Theory 36 (1990) 183–184. [CrossRef] [Google Scholar]
  • H.D. Sherali and W.P. Adams, A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM J. Discrete Math. 3 (1990) 411–430. [CrossRef] [MathSciNet] [Google Scholar]
  • H.D. Sherali and W.P. Adams, A hierarchy of relaxations and convex hull characterizations for mixed-integer zero–one programming problems. Discrete Appl. Math. 52 (1994) 83–106. [Google Scholar]
  • M.R. Slusky and W.-J. van Hoeve, A Lagrangian Relaxation for Golomb Rulers. (2013) 251–267. [Google Scholar]
  • B.M. Smith, K. Stergiou and T. Walsh, Using auxiliary variables and implied constraints to model non-binary problems. In: Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on Innovative Applications of Artificial Intelligence. AAAI Press (2000) 182–187. [Google Scholar]
  • S.W. Soliday, A. Homaifar and G.L. Lebby, Genetic algorithm approach to the search for golomb rulers. In: ICGA. (1995) 528–535. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.