Open Access
Issue
RAIRO-Oper. Res.
Volume 58, Number 4, July-August 2024
Page(s) 3143 - 3169
DOI https://doi.org/10.1051/ro/2024103
Published online 08 August 2024
  • M.J.C. Asmild and D.N. Paradi Reese, Theoretical perspectives of trade-off analysis using DEA. Omega 34 (2006) 337–343. [CrossRef] [Google Scholar]
  • K.B. Atici and V. Podinovski, Mixed partial elasticities in constant returns-to-scale production technologies. Eur. J. Oper. Res. 220 (2012) 262–269. [CrossRef] [Google Scholar]
  • R.D. Banker and R.M. Thrall, Estimation of returns to scale using data envelopment analysis. Eur. J. Oper. Res. 62 (1992) 74–84. [CrossRef] [Google Scholar]
  • R.D. Banker, A. Charnes and W.W Cooper, Some models for estimating technical an scale inefficiencies in data envelopment analysis. Manage. Sci. 30 (1984) 1078–1092. [CrossRef] [Google Scholar]
  • R.G. Chambers, Y. Chung and R. Fare, Benefit and distance functions. J. Econ. Theory 70 (1996) 407–419. [Google Scholar]
  • R.G. Chambers, Y. Chung and R. Fare, Profit, directional distance functions, and Nerlovian efficiency. J. Optim. Theory App. 98 (1998) 351–364. [CrossRef] [Google Scholar]
  • Y.H. Chung, R. Fare and S. Grosskopf, Productivity and undesirable outputs: a directional distance function approach. J. Environ. Manage. 51 (1997) 229–240. [CrossRef] [Google Scholar]
  • B.K. Das, R. Hassan, M.S. Tushar, F. Zaman, M. Hasan and P. Das, Techno-economic and environmental assessment of a hybrid renewable energy system using multi-objective genetic algorithm: a case study for remote Island in Bangladesh. Energy Convers. Manage. 230 (2021) 113823. [CrossRef] [Google Scholar]
  • R. F¨are and S. Grosskopf, Nonparametric productivity analysis with undesirable outputs. Am. J. Agr. Econ. 85 (2003) 1070–1074. [CrossRef] [Google Scholar]
  • R. F¨are and S. Grosskopf, A comment on weak disposability in nonparametric production analysis. Am. J. Agr. Econ. 91 (2009) 535–538. [CrossRef] [Google Scholar]
  • R. Fare, S. Grosskopf and V. Valdmanis, Measuring plant capacity, utilization and technical change: a nonparametric approach. Int. Econ. Rev. 30 (1989) 655–666. [CrossRef] [Google Scholar]
  • R. F¨are, S, Grosskopf and O. Zai, Hyperbolic efficiency and return to the dollar. Eur. J. Oper. Res. 136 (2002) 671–679. [CrossRef] [Google Scholar]
  • R. Farzipoor Saen, Developing a new data envelopment analysis methodology for supplier selection in the presence of both undesirable outputs and imprecise data. J. Int. Adv. Manuf. Technol. 51 (2010) 1243–1250. [CrossRef] [Google Scholar]
  • F.R. Førsund, L. Hjalmarsson, V.E. Krivonozhko and O.B. Utkin, Calculation of scale elasticities in DEA models: direct and indirect approaches. J. Prod. Anal. 28 (2007) 45–56. [CrossRef] [Google Scholar]
  • H.O. Fried, C.A.K. Lovell and S.S. Schmidt, The Measurement of Productive Efficiency and Productivity Growth. Oxford University Press (2008). [CrossRef] [Google Scholar]
  • A. Hailu and T.S. Veeman, Non-parametric productivity analysis with undesirable outputs: an application to the Canadian pulp and paper industry. Am. J. Agr. Econ. 83 (2001) 605–616. [CrossRef] [Google Scholar]
  • Iran Power Generation and Transmission Company, “Detailed Statistics of Iran‘s Power Industry Electricity Transmission” (in Persian), Iran Power Generation and Transmission Company. https://web.archive.org/web/20210514014836/ http://amar.tavanir.org.ir/ (2015). [Google Scholar]
  • E. Karakas, Inlet air cooling method for gas turbine based power plant. ASME 128 (2006) 312–316. [Google Scholar]
  • V.E. Krivonozhko, A.V. Volodin, I.A. Sablin and M. Patrin, Constructions of economic functions and calculation of marginal rates in DEA using parametric optimization methods. J. Oper. Res. Soc. 55 (2004) 1049–1058. [CrossRef] [Google Scholar]
  • T. Kuosmanen, Weak disposability in nonparametric productivity analysis with undesirable outputs. Am. J. Agr. Econ. 87 (2005) 1077–1082. [CrossRef] [Google Scholar]
  • T. Kuosmanen, Representation theorem for convex nonparametric least squares. Econ. J. 11 (2008) 308–325. [Google Scholar]
  • T. Kuosmanen and V.V Podinovski, Weak disposability in nonparametric production analysis; reply to Fare and Grosskopf. Am. J. Agr. Econ. 91 (2009) 539–545. [CrossRef] [Google Scholar]
  • C.Y. Lee, Directional marginal productivity: a foundation of meta-data envelopment analysis. J. Oper. Res. Soc. 68 (2017) 544–555. [CrossRef] [Google Scholar]
  • C.Y. Lee and A.L. Johnson, Proactive data envelopment analysis: effective production and capacity expansion under stochastic environment. Eur. J. Oper. Res. 232 (2014) 537–548. [CrossRef] [Google Scholar]
  • H.S. Lee, J.Y. Kimal and J.W. Lee, Resource allocation in wireless networks with deep reinforcement learning: a circumstance-independent approach. IEEE Syst. J. 14 (2020) 2589–2592. [CrossRef] [Google Scholar]
  • B. Mohanty and G. Paloso Jr, Enhancing gas turbine performance by intake air cooling using an absorption chiller. Heat Recovery Syst. CHP 15 (1995) 41–50. [CrossRef] [Google Scholar]
  • M.R. Mozaffari, S. Mohammadi, P.F. Wanke and H.L. Correa, Towards greener petrochemical production: two-stage network data envelopment analysis in a fully fuzzy environment in the presence of undesirable outputs. Expert Syst. App. 164 (2021) 113903. [CrossRef] [Google Scholar]
  • N. Pachar, J.D. Darbari, K. Govindan and P.C. Jha, Sustainable performance measurement of Indian retail chain using two-stage network DEA. Ann. Oper. Res. 315 (2022) 1477–1515. [CrossRef] [MathSciNet] [Google Scholar]
  • V. Podinovski and F.R. Førsund, Differential characteristics of efficient frontiers in data envelopment analysis. Oper. Res. 58 (2010) 1743–1754. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Pouralizadeh, A DEA model to sustainability improvement of the electricity supply chain in presence dual-role factors and undesirable outputs: a case on the power industry. AIMS Energy 8 (2020) 580–614. [CrossRef] [Google Scholar]
  • M. Pouralizadeh, Sustainability assessment of electricity supply chain via resource waste reduction and pollution emissions management: a case study of the power industry. Smart Sustainable Manuf. Syst. 5 (2021) 290–309. [CrossRef] [Google Scholar]
  • M. Pouralizadeh, A. Amirtaimoori, R. Riccardi and M. Vaez-Ghasemi, Supply chain performance evaluation in the presence of undesirable products: a case on power industry. AIMS Energy 8 (2020) 48–80. [CrossRef] [Google Scholar]
  • D.C. Rosen, C. Schaffnit and J.C. Paradi, Marginal rates and two dimensional level curves in DEA. J. Prod. Anal. 9 (1998) 205–232. [CrossRef] [Google Scholar]
  • S. Sarabpreet and K. Rajesh, Ambient air temperature effect on power plant performance. Int. J. Eng. Sci. Technol. 4 (2012) 3916–3923. [Google Scholar]
  • R.W. Shephard, Theory of Cost and Production Functions. Princeton University Press, Princeton (1970). [Google Scholar]
  • A. Tajbakhsh and E. Hassini, A data envelopment analysis approach to evaluate sustainability in supply chain networks. J. Clean. Prod. 105 (2015) 74–85. [Google Scholar]
  • M. Tavana, H. Mirzagoltabar and S.M. Mirhedayatian, A new network Epsilon-based DEA model for supply chain performance evaluation. J. Comput. Ind. Eng. 66 (2013) 501–513. [CrossRef] [Google Scholar]
  • K. Tone and M. Tsutsui, An epsilon-based measure of efficiency in DEA-A third pole of technical efficiency. Eur. J. Oper. Res. 207 (2010) 1554–156. [CrossRef] [Google Scholar]
  • Q. Wang and L. Wang, Renewable energy consumption and economic growth in OECD countries: a nonlinear panel data analysis. Energy J. 207 (2020) 118200. [CrossRef] [Google Scholar]
  • D. Wang, D, F. Wei and F. Yan, Efficiency evaluation of a two-stage production process with feedback: an improved DEA model. Inf. Syst. Oper. Res. 61 (2023) 67–85. [Google Scholar]
  • Q. Wang, J. Guo, R. Li and X.T. Jiang, Exploring the role of nuclear energy in the energy transition: a comparative perspective of the effects of coal, oil, natural gas, renewable energy, and nuclear power on economic growth and carbon emission. Environ. Res. J. 221 (2023) 115290. [CrossRef] [Google Scholar]
  • J. Wu, M. Li, Q. Zhu, Z. Zhou and L. Liang, Energy and environmental efficiency measurement of China’s industrial sectors: a DEA model with non-homogeneous inputs and outputs. Energy Econ. 78 (2019) 468–480. [CrossRef] [Google Scholar]
  • G.L. Yang and W.B. Liu, Analysis of returns to scale of the biological institutes based on DEA method. Sci. Res. Manage. 36 (2015) 104–111. Chinese. [Google Scholar]
  • G.L. Yang and W.B Liu, Estimating directional returns to scale in DEA. Inf. Syst. Oper. Res. 55 (2017) 243–273. [Google Scholar]
  • G.L. Yang, R. Rousseau, L.Y. Yang and W.B. Liu, A study on directional returns to scale. J. Inf. 8 (2014) 628–641. [Google Scholar]
  • R. Zhang, Q. Wei, A. Li and S. Chen, A new intermediate network data envelopment analysis model for evaluating China’s sustainability. J. Clean. Prod. 356 (2022) 131845. [CrossRef] [Google Scholar]
  • Q.J. Zhu, J. Aparicio, F. Li, J. Wu and G. Kou, Determining closest targets on the extended facet production possibility set in data envelopment analysis: modeling and computational aspects. Eur. J. Oper. Res. 296 (2022) 927–939. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.