Open Access
Issue
RAIRO-Oper. Res.
Volume 58, Number 4, July-August 2024
Page(s) 3119 - 3142
DOI https://doi.org/10.1051/ro/2024097
Published online 08 August 2024
  • A. Addou and A. Roubi, Proximal-type methods with generalized Bregman functions and applications to generalized fractional programming. Optimization 59 (2010) 1085–1105. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Addoune, M. El Haffari and A. Roubi, A proximal point algorithm for generalized fractional programs. Optimization 66 (2017) 1495–1517. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Addoune, K. Boufi and A. Roubi, Proximal bundle algorithms for nonlinearly constrained convex minimax fractional programs. J. Optim. Theory Appl. 179 (2018) 212–239. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Aubry, A. De Maio and M.M. Naghsh, Optimizing radar waveform and doppler filter bank via generalized fractional programming. IEEE J. Sel. Topics Signal Process 9 (2015) 1387–1399. [CrossRef] [Google Scholar]
  • A. Aubry, V. Carotenuto and A. De Maio, New results on generalized fractional programming problems with Toeplitz quadratics. IEEE Signal Process. Lett. 23 (2016) 848–852. [CrossRef] [Google Scholar]
  • A. Aubry, A. De Maio, Y. Huang and M. Piezzo, Robust design of radar doppler filters. IEEE Trans. Signal Process. 64 (2016) 5848–5860. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Aubry, A. De Maio, A. Zappone, M. Razaviyayn and Z.-Q. Luo, A new sequential optimization procedure and its applications to resource allocation for wireless systems. IEEE Trans. Signal Process. 66 (2018) 6518–6533. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Auslender, R. Shefi and M. Teboulle, A moving balls approximation method for a class of smooth constrained minimization problems. SIAM J. Optim. 20 (2010) 3232–3259. [CrossRef] [MathSciNet] [Google Scholar]
  • A.I. Barros, J.B.G. Frenk, S. Schaible and S. Zhang, A new algorithm for generalized fractional programs. Math. Program. 72 (1996) 147–175. [Google Scholar]
  • A.I. Barros, J.B.G. Frenk, S. Schaible and S. Zhang, Using duality to solve generalized fractional programming problems. J. Glob. Optim. 8 (1996) 139–170. [CrossRef] [Google Scholar]
  • A. Beck, A. Ben-Tal and L. Tetruashvili, A sequential parametric convex approximation method with applications to non-convex truss topology design problems. J. Glob. Optim. 47 (2010) 29–51. [CrossRef] [Google Scholar]
  • C.R. Bector, S. Chandra and M.K. Bector, Generalized fractional programming duality: a parametric approach. J. Optim. Theory Appl. 60 (1989) 243–260. [CrossRef] [MathSciNet] [Google Scholar]
  • J.C. Bernard and J.A. Ferland, Convergence of interval-type algorithms for generalized fractional programming. Math. Program. 43 (1989) 349–363. [CrossRef] [Google Scholar]
  • D.P. Bertsekas, Nonlinear Programming, 2nd edition. Athena Scientific, Belmont, MA (1999). [Google Scholar]
  • H. Boualam and A. Roubi, Dual algorithms based on the proximal bundle method for solving convex minimax fractional programs. J. Ind. Manag. Optim. 15 (2019) 1897–1920. [CrossRef] [MathSciNet] [Google Scholar]
  • H. Boualam and A. Roubi, Proximal bundle methods based on approximate subgradients for solving Lagrangian duals of minimax fractional programs. J. Global Optim. 74 (2019) 255–284. [CrossRef] [MathSciNet] [Google Scholar]
  • H. Boualam and A. Roubi, Augmented Lagrangian dual for nonconvex minimax fractional programs and proximal bundle algorithms for its resolution. J. Ind. Manag. Optim. 19 (2023) 3610–3636. [CrossRef] [MathSciNet] [Google Scholar]
  • K. Boufi and A. Roubi, Dual method of centers for solving generalized fractional programs. J. Glob. Optim. 69 (2017) 387–426. [CrossRef] [Google Scholar]
  • K. Boufi and A. Roubi, Duality results and dual bundle methods based on the dual method of centers for minimax fractional programs. SIAM J. Optim. 29 (2019) 1578–1602. [CrossRef] [MathSciNet] [Google Scholar]
  • K. Boufi and A. Roubi, Prox-regularization of the dual method of centers for generalized fractional programs. Optim. Methods Softw. 34 (2019) 515–545. [CrossRef] [MathSciNet] [Google Scholar]
  • K. Boufi, M. El Haffari and A. Roubi, Optimality conditions and a method of centers for minimax fractional programs with difference of convex functions. J. Optim. Theory App. 187 (2020) 105–132. [CrossRef] [Google Scholar]
  • L.M. Bregman, The relaxation method for finding the common point of convex sets and its application to the solution of problems in convex programming. U.S.S.R. Comput. Math. Math. Phys. 7 (1967) 200–217. [CrossRef] [Google Scholar]
  • J.-P. Crouzeix and J.A. Ferland, Algorithms for generalized fractional programming. Math. Program. 52 (1991) 191–207. [CrossRef] [Google Scholar]
  • J.-P. Crouzeix, J.A. Ferland and S. Schaible, Duality in generalized linear fractional programming. Math. Program. 27 (1983) 342–354. [CrossRef] [Google Scholar]
  • J.-P. Crouzeix, J.A. Ferland and S. Schaible, An algorithm for generalized fractional programs. J. Optim. Theory App. 47 (1985) 35–49. [CrossRef] [Google Scholar]
  • J.-P. Crouzeix, J.A. Ferland and S. Schaible, A note on an algorithm for generalized fractional programs. J. Optim. Theory Appl. 50 (1986) 183–187. [CrossRef] [MathSciNet] [Google Scholar]
  • J.-P. Crouzeix, J.A. Ferland and H.V. Nguyen, Revisiting Dinkelbach-type algorithms for generalized fractional programs. Opsearch 45 (2008) 97–110. [CrossRef] [MathSciNet] [Google Scholar]
  • W. Dinkelbach, On nonlinear fractional programming. Manage. Sci. 13 (1967) 492–498. [CrossRef] [Google Scholar]
  • M. El Haffari and A. Roubi, Convergence of a proximal algorithm for solving the dual of a generalized fractional program. RAIRO-Oper. Res. 51 (2017) 985–1004. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • M. El Haffari and A. Roubi, Prox-dual regularization algorithm for generalized fractional programs. J. Ind. Manag. Optim. 13 (2017) 1991–2013. [CrossRef] [MathSciNet] [Google Scholar]
  • K. Fan, Minimax theorems. Proc. Natl. Acad. Sci. USA 39 (1953) 42–47. [CrossRef] [PubMed] [Google Scholar]
  • J.B.G. Frenk and S. Schaible, Fractional programming. ERIM Report Series, Reference No. ERS-2004-074-LIS (2004). [Google Scholar]
  • A. Ghazi and A. Roubi, A DC approach for minimax fractional optimization programs with ratios of convex functions. Optim. Methods Softw. 37 (2022) 639–657. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Ghazi and A. Roubi, Optimality conditions and DC-Dinkelbach-type algorithm for generalized fractional programs with ratios of difference of convex functions. Optim. Lett. 15 (2021) 2351–2375. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Gugat, Prox-regularization methods for generalized fractional programming. J. Optim. Theory Appl. 99 (1998) 691–722. [CrossRef] [MathSciNet] [Google Scholar]
  • R. Jagannathan and S. Schaible, Duality in generalized fractional programming via Farkas’ lemma. J. Optim. Theory App. 41 (1983) 417–424. [CrossRef] [Google Scholar]
  • A. Jayswal, I.M. Stancu-Minasian and A.M. Stancu, Multiobjective fractional programming problems involving semilocally type-I univex functions. Southeast Asian Bull. Math. 38 (2014) 225–241. [MathSciNet] [Google Scholar]
  • J.-Y. Lin, H.-J. Chen and R.-L. Sheu, Augmented Lagrange primal-dual approach for generalized fractional programming problems. J. Ind. Manag. Optim. 4 (2013) 723–741. [CrossRef] [MathSciNet] [Google Scholar]
  • O.L. Mangasarian and S. Fromovitz, The Fritz John necessary optimality conditions in the presence of equality and inequality constraints. J. Math. Anal. Appl. 17 (1967) 37–47. [CrossRef] [MathSciNet] [Google Scholar]
  • B.R. Marks and G.P. Wright, A general inner approximation algorithm for nonconvex mathematical programs. Oper. Res. 26 (1978) 681–683. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Nagih and G. Plateau, Problèmes fractionnaires: tour d’horizon sur les applications et méthodes de résolution. RAIRO-Oper. Res. 33 (1999) 383–419. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • B.N. Pshenichnyi, Necessary Conditions for an Extremum. Marcel Dekker Inc., New York (1971). [Google Scholar]
  • M. Razaviyayn, M. Hong and Z.-Q. Luo, A unified convergence analysis of block successive minimization methods for nonsmooth optimization. SIAM J. Optim. 23 (2013) 1126–1153. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Roubi, Method of centers for generalized fractional programming. J. Optim. Theory Appl. 107 (2000) 123–143. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Roubi, Convergence of prox-regularization methods for generalized fractional programming. RAIRO Oper. Res. 36 (2002) 73–94. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • S. Schaible, Bibliography in fractional programming. Z. Oper. Res. 26 (1982) 211–241. [Google Scholar]
  • S. Schaible, Fractional programming, in Handbook Global Optimization, edited by R. Horst and P.M. Pardalos. Kluwer, Dordrecht (1995) 495–608. [CrossRef] [Google Scholar]
  • A.M. Stancu, Mathematical Programming with Type-I Functions. Matrix Rom, Bucharest (2013). [Google Scholar]
  • I.M. Stancu-Minasian, Fractional Programming. Theory, Methods and Applications. Kluwer Academic Publishers, Dordrecht, The Netherlands (1997). [CrossRef] [Google Scholar]
  • I.M. Stancu-Minasian, A sixth bibliography of fractional programming. Optimization 55 (2006) 405–428. [CrossRef] [MathSciNet] [Google Scholar]
  • I.M. Stancu-Minasian, A seventh bibliography of fractional programming. Adv. Model. Optim. 15 (2013) 309–386. [Google Scholar]
  • I.M. Stancu-Minasian, An eighth bibliography of fractional programming. Optimization 66 (2017) 439–470. [CrossRef] [MathSciNet] [Google Scholar]
  • I.M. Stancu-Minasian, A ninth bibliography of fractional programming. Optimization 68 (2019) 2125–2169. [CrossRef] [Google Scholar]
  • I.M. Stancu-Minasian and N. Teodorescu, Programarea fract¸ionară cu mai multe funct¸ii-obiectiv. Matrix Rom, Bucure¸sti (2011). [Google Scholar]
  • J.-J. Strodiot, J.-P. Crouzeix, J.A. Ferland and V.H. Nguyen, An inexact proximal point method for solving generalized fractional programs. J. Glob. Optim. 42 (2008) 121–138. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.