Open Access
Issue
RAIRO-Oper. Res.
Volume 58, Number 4, July-August 2024
Page(s) 3263 - 3289
DOI https://doi.org/10.1051/ro/2024122
Published online 08 August 2024
  • S.S. Ali, H. Barman, R. Kaur, H. Tomaskova and S.K. Roy, Multi-product multi echelon measurements of perishable supply chain: Fuzzy non-linear programming approach. Mathematics 9 (2021) 2093. [CrossRef] [Google Scholar]
  • H. Barman, M. Pervin and S.K. Roy, Impacts of green and preservation technology investments on a sustainable epq model during COVID-19 pandemic. RAIRO: OR 56 (2022) 2245–2275. [CrossRef] [EDP Sciences] [Google Scholar]
  • H. Barman, M. Pervin, S.K. Roy and G.W. Weber, Analysis of a dual-channel green supply chain game-theoretical model under carbon policy. Int. J. Syst. Sci. O&L. 10 (2023) 2242770. [Google Scholar]
  • H. Barman, S.K. Roy, L. Sakalauskas and G.W. Weber, Inventory model involving reworking of faulty products with three carbon policies under neutrosophic environment. Adv. Eng. Inf. 57 (2023) 102081. [CrossRef] [Google Scholar]
  • D.R. Bell, S. Gallino and A. Moreno, Offline showrooms in omnichannel retail: demand and operational benefits. Manag. Sci. 64 (2018) 1629–1651. [CrossRef] [Google Scholar]
  • Bigcommerce, Ecommerce: the history and future of online shopping (2023). Online: https://www.bigcommerce.com/articles/ecommerce/growth-of-ecommerce. [Google Scholar]
  • I. Bose and P. Anand, On returns policies with exogenous price. Eur. J. Oper. Res. 178 (2007) 782–788. [CrossRef] [Google Scholar]
  • I. Chae, A.T. Stephen, Y. Bart and D. Yao, Spillover effects in seeded word-of-mouth marketing campaigns. Market. Sci. 36 (2017) 89–104. [CrossRef] [Google Scholar]
  • S. Dong, Z. Qin and Y. Yan, Effects of online-to-offline spillovers on pricing and quality strategies of competing firms. Int. J. Prod. Econ. 244 (2022) 108376. [CrossRef] [Google Scholar]
  • eMarketer, The role of customer product reviews (2010). Online: https://www.emarketer.com/Article/Role-of-Customer-Product-Reviews/1008019/. [Google Scholar]
  • eMarketer, Online reviews influence UK apparel accessories shoppers (2015). Online: https://www.emarketer.com/Article/Online-Reviews-Influence-UK-Apparel-AccessoriesShoppers/1014652. [Google Scholar]
  • S.Z.A. Gök and I. Ozcan, On big boss fuzzy interval games. Eur. J. Oper. Res. 306 (2023) 1040–1046. [CrossRef] [Google Scholar]
  • M. Johari and S.M. Hosseini-Motlagh, Coordination of social welfare, collecting, recycling and pricing decisions in a competitive sustainable closed-loop supply chain: a case for lead-acid battery. Ann. Oper. Res. (2019) 1–36. [Google Scholar]
  • Y. Kwark, G.M. Lee, P.A. Pavlou and L. Qiu, On the spillover effects of online product reviews on purchases: evidence from clickstream data. Inf. Syst. Res. 32 (2021) 895–913. [CrossRef] [Google Scholar]
  • Y. Li, G. Li, G.K. Tayi and T. Cheng, Omni-channel retailing: Do offline retailers benefit from online reviews? Int. J. Prod. Econ. 218 (2019) 43–61. [CrossRef] [Google Scholar]
  • Y. Li, Y. Xiong, F. Mariuzzo and S. Xia, The underexplored impacts of online consumer reviews: pricing and new product design strategies in the O2O supply chain. Int. J. Prod. Econ. 237 (2021) 108148. [CrossRef] [Google Scholar]
  • M. Li, X. Zhang and B. Dan, Cooperative advertising contract design in a supply chain with an offline showroom under asymmetric information. J. Oper. Res. Soc. 73 (2021) 261–272. [Google Scholar]
  • Y. Li, M. Junhai and Y. Liu, Study on the complexity of channel pricing game in showrooming O2O supply chain. RAIRO: Oper. Res. 56 (2022) 3373–3392. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • H. Li, K. Yang and G. Zhang, The impact of online reviews on pricing strategy and coordination in a two-period two-echelon supply chain. INFOR: Inf. Syst. Oper. Res. 61 (2023) 1–33. [MathSciNet] [Google Scholar]
  • W. Liu, X. Yan, X. Li and W. Wei, The impacts of market size and data-driven marketing on the sales mode selection in an internet platform based supply chain. Transp. Res. E: Logist. Transp. Rev. 136 (2020) 101914. [CrossRef] [Google Scholar]
  • Y. Liu, W.X. Gan and Q. Zhang, Decision-making mechanism of online retailer based on additional online comments of consumers. J. Retailing Consum. Serv. 59 (2021) 102389. [CrossRef] [Google Scholar]
  • P.R.O.C. Ministry of Commerce, E-commerce in China 2019. (2019) Online: http://images.mofcom.gov.cn/wzs2/202007/20200703162035768.pdf. [Google Scholar]
  • A. Mondal and S.K. Roy, Multi-objective sustainable opened-and closed-loop supply chain under mixed uncertainty during COVID-19 pandemic situation. Comput. Ind. Eng. 159 (2021) 107453. [CrossRef] [Google Scholar]
  • I. Özcan and S.Z.A. Gök, On cooperative fuzzy bubbly games. J. Dyn. Games 8 (2021) 267–275. [CrossRef] [MathSciNet] [Google Scholar]
  • I. Ozcan, J. Sledzinski, S. Gök, M. Butlewski and G. Weber, Mathematical encouragement of companies to cooperate by using cooperative games with fuzzy approach. J. Ind. Manag. Optim. 19 (2023) 7180–7195. [CrossRef] [MathSciNet] [Google Scholar]
  • I. Ozcan, S.Z.A. Gök and G.W. Weber, Peer group situations and games with fuzzy uncertainty. J. Ind. Manag. Optim. 20 (2024) 428–438. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Panda and T. Maiti, Two-period decision strategies in a dual-channel supply chain considering reference price and online reviews. RAIRO: Oper. Res. 57 (2023) 2804–7303. [Google Scholar]
  • A. Paul, M. Pervin, S.K. Roy, G.W. Weber and A. Mirzazadeh, Effect of price-sensitive demand and default risk on optimal credit period and cycle time for a deteriorating inventory model. RAIRO: Oper. Res. 55 (2021) 2575–2592. [Google Scholar]
  • R. Salhab, J. Le Ny, R.P. Malhamé and G. Zaccour, Dynamic marketing policies with rating-sensitive consumers: a mean-field games approach. Eur. J. Oper. Res. 299 (2022) 1079–1093. [CrossRef] [Google Scholar]
  • J. Sanchez, C. Abril and M. Haenlein, Competitive spillover elasticities of electronic word of mouth: an application to the soft drink industry. J. Acad. Market. Sci. 48 (2020) 270–287. [CrossRef] [Google Scholar]
  • D. Shin, S. Vaccari and A. Zeevi, Dynamic pricing with online reviews. Manag. Sci. 69 (2023) 824–845. [CrossRef] [Google Scholar]
  • Shopify, A retailer’s guide to getting more customer reviews (2022). Online: https://www.shopify.com/retail/customer-reviews-in-store. [Google Scholar]
  • W. Song, J. Chen and W. Li, Spillover effect of consumer awareness on third parties’ selling strategies and retailers’ platform openness. Inf. Syst. Res. 32 (2021) 172–193. [CrossRef] [Google Scholar]
  • M. Sun, J. Chen, Y. Tian and Y. Yan, The impact of online reviews in the presence of customer returns. Int. J. Prod. Econ. 232 (2021) 107929. [CrossRef] [Google Scholar]
  • J. Wang, S. Shum and G. Feng, Supplier’s pricing strategy in the presence of consumer reviews. Eur. J. Oper. Res. 296 (2022) 570–586. [CrossRef] [Google Scholar]
  • Q. Wang, N. Zhao and X. Ji, Reselling or agency selling? The strategic role of live streaming commerce in distribution contract selection. Electron. Commerce Res. (2022) 1–34. [Google Scholar]
  • X. Wang, M. Leng, J. Song, C. Luo and S. Hui, Managing a supply chain under the impact of customer reviews: a two-period game analysis. Eur. J. Oper. Res. 277 (2019) 454–468. [CrossRef] [Google Scholar]
  • Y. Wu, J. Wang and L. Chen, Optimization and decision of supply chain considering negative spillover effect and service competition. Sustainability 13 (2021) 2320. [CrossRef] [Google Scholar]
  • W. Yang, J. Zhang and H. Yan, Impacts of online consumer reviews on a dual-channel supply chain. Omega 101 (2021) 102266. [CrossRef] [Google Scholar]
  • Q. Ye, R. Law and B. Gu, The impact of online user reviews on hotel room sales. Int. J. Hospit. Manag. 28 (2009) 180–182. [CrossRef] [Google Scholar]
  • Z. Zhang, G. Nan, M. Li and Y. Tan, Competitive entry of information goods under quality uncertainty. Manag. Sci. 68 (2022) 2869–2888. [CrossRef] [Google Scholar]
  • X. Zhen, S. Xu, Y. Li and D. Shi, When and how should a retailer use third-party platform channels? The impact of spillover effects. Eur. J. Oper. Res. 301 (2022) 624–637. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.