Open Access
Issue
RAIRO-Oper. Res.
Volume 59, Number 2, March-April 2025
Page(s) 1247 - 1256
DOI https://doi.org/10.1051/ro/2025039
Published online 06 May 2025
  • A. Alhashim, W.J. Desormeaux and T.W. Haynes, Roman domination in complementary prisms. Aus. J. Comb. 68 (2017) 218–228. [Google Scholar]
  • S. Banerjee, J.M. Keil and D. Pradhan, Perfect Roman domination in graphs. Theor. Comput. Sci. 796 (2019) 1–21. [CrossRef] [Google Scholar]
  • L.A. Basilio, S. Bermudo and J.M. Sigarreta, Bounds on the differential of a graph. Utilitas Mathematica 103 (2017) 319–334. [MathSciNet] [Google Scholar]
  • Z.N. Berberler and M. Çerezci, Unique response Roman domination versus 2-packing differential in complementary prisms. Math. Notes 115 (2024) 868–876. [CrossRef] [MathSciNet] [Google Scholar]
  • Z.N. Berberler and A. Kanlı, Differential in complementary prisms. Numer. Methods Part. Differ. Equ. 38 (2022) 936–946. [CrossRef] [Google Scholar]
  • Z.N. Berberler and A. Kanlı, Roman domination in complementary prisms. MAT-KOL 30 (2024) 133–140. [Google Scholar]
  • S. Bermudo, On the differential and Roman domination number of a graph with minimum degree two. Discrete Appl. Math. 232 (2017) 64–72. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Bermudo and H. Fernau, Lower bounds on the differential of a graph. Discrete Math. 312 (2012) 3236–3250. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Bermudo and H. Fernau, Computing the differential of a graph: hardness, approximability and exact algorithms. Discrete Appl. Math. 165 (2014) 69–82. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Bermudo and H. Fernau, Combinatorics for smaller kernels: the differential of a graph. Theor. Comput. Sci. 562 (2015) 330–345. [CrossRef] [Google Scholar]
  • S. Bermudo, H. Fernau and J.M. Sigarreta, The differential and the Roman domination number of a graph. Appl. Anal. Discrete Math. 8 (2014) 155–171. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Bermudo, J.C. Hernández-Gómez, J.M. Rodríguez and J.M. Sigarreta, Relations between the differential and parameters in graphs. Electron. Notes Discrete Math. 46 (2014) 281–288. [CrossRef] [Google Scholar]
  • S. Bermudo, L. De la Torre, A.M. Martín-Caraballo and J.M. Sigarreta, The differential of the strong product graphs. Int. J. Comput. Math. 92 (2015) 1124–1134. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Bermudo, J.M. Rodríguez and J.M. Sigarreta, On the differential in graphs. Utilitas Mathematica 97 (2015) 257–270. [MathSciNet] [Google Scholar]
  • J.A. Bondy and U.S.R Murty, Graph Theory with Applications. American Elsevier Publishing Co., Inc., New York (1976). [CrossRef] [Google Scholar]
  • F. Buckley and F. Harary, Distance in Graphs. Addison-Wesley Publishing Company Advanced Book Program, Redwood City, CA (1990). [Google Scholar]
  • A. Cabrera Martínez and J.A. Rodríguez-Velázquez, On the perfect differential of a graph. Quaestiones Mathematicae 45 (2021) 327–345. [Google Scholar]
  • B. Chaluvaraju and V. Chaitra, Roman domination in complementary prism graphs. Int. J. Math. Comb. 2 (2012) 24–31. [Google Scholar]
  • G. Chartrand and L. Lesniak, Graphs and Digraphs, 4th edition. Chapman Hall, London (2005). [Google Scholar]
  • E.J. Cockayne, P.A. Dreyer, S.M. Hedetniemi and S.T. Hedetniemi, Roman domination in graphs. Discrete Math. 278 (2004) 11–22. [Google Scholar]
  • M. Darkooti, A. Alhevaz, S. Rahimi and H. Rahbani, On perfect Roman domination number in trees: complexity and bounds. J. Comb. Optim. 38 (2019) 712–720. [CrossRef] [MathSciNet] [Google Scholar]
  • P.A. Dreyer, Applications and variations of domination in graphs. Ph.D. thesis, Rutgers University, New Jersey (2000). [Google Scholar]
  • R. Frucht and F. Harary, On the corona of two graphs. Aequ. Math. 4 (1970) 322–325. [CrossRef] [Google Scholar]
  • X. Fu, Y. Yang and B. Jiang, Roman domination in regular graphs. Discrete Math. 309 (2009) 1528–1537. [CrossRef] [MathSciNet] [Google Scholar]
  • T.W. Haynes, S. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs. Marcel Dekker, New York (1998). [Google Scholar]
  • T.W. Haynes, M.A. Henning, P.J. Slater and L.C. Van Der Merwe, The complementary product of two graphs. Bull. Inst. Comb. App. 51 (2007) 21–30. [Google Scholar]
  • M.A. Henning, A characterization of Roman trees. Discuss. Math. Graph Theory 22 (2002) 225–234. [Google Scholar]
  • M.A. Henning and W.F. Klostermeyer, Perfect Roman domination in regular graphs. Appl. Anal. Discrete Math. 12 (2018) 143–152. [CrossRef] [MathSciNet] [Google Scholar]
  • M.A. Henning, W.F. Klostermeyer and G. MacGillivray, Perfect Roman domination in trees. Discrete Appl. Math. 236 (2018) 235–245. [CrossRef] [MathSciNet] [Google Scholar]
  • J.C. Hernández-Gómez, Differential and operations on graphs. Int. J. Math. Anal. 9 (2015) 341–349. [CrossRef] [Google Scholar]
  • J.R. Lewis, Differentials of graphs. Master’s thesis, East Tennessee State University (2004). [Google Scholar]
  • M. Liedloff, T. Kloks, J. Liu and S.-L. Peng, Efficient algorithms on Roman domination on some classes of graphs. Discrete Appl. Math. 156 (2008) 3400–3415. [CrossRef] [MathSciNet] [Google Scholar]
  • K. Mann and H. Fernau, Perfect Roman domination: aspects of enumeration and parameterization. Algorithms 17 (2024) 576. [CrossRef] [Google Scholar]
  • J.L. Mashburn, T.W. Haynes, S.M. Hedetniemi, S.T. Hedetniemi and P.J. Slater, Differentials in graphs. Utilitas Mathematica 69 (2006) 43–54. [MathSciNet] [Google Scholar]
  • D.A. Mojdeh, A. Parsian and I. Masoumi, Strong Roman domination number of complementary prism graphs. Turkish J. Math. Comput. Sci. 11 (2019) 40–47. [Google Scholar]
  • P. Pavlič and J. Žerovnik, Roman domination number of the Cartesian products of paths and cycles. Electron. J. Comb. 19 (2012) 1–37. [Google Scholar]
  • P.R.L. Pushpam and D. Yokesh, Differential in certain classes of graphs. Tamkang J. Math. 41 (2010) 129–138. [CrossRef] [MathSciNet] [Google Scholar]
  • W. Shang and X. Hu, The Roman domination problem in unit disk graphs. Lect. Notes Comput. Sci. 4489 (2007) 305–312. [CrossRef] [Google Scholar]
  • J.M. Sigarreta, Differential in Cartesian product graphs. Ars Comb. 126 (2016) 259–267. [Google Scholar]
  • X. Song and W. Shang, Roman domination in a tree. Ars Comb. 98 (2011) 73–82. [Google Scholar]
  • I. Stewart, Defned the Roman Empire. Scientific American (1999) 136–139. [Google Scholar]
  • D.B. West, Introduction to Graph Theory. Prentice Hall, NJ (2001). [Google Scholar]
  • J. Yue and J. Song, Note on the perfect Roman domination number of graphs. Appl. Math. Comput. 364 (2020) 124685. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.